If V is speed of a moving vehicle, r is radius of the curve, g is the acceleration due to gravity, W is
the width of the carriageway, the super elevation is
(A) WV/gr
(B) W²V/gr
(C) WV²/gr
(D) WV/gr²

1 Answer

Answer :

Answer: Option C

Related questions

Description : If is the speed of a locomotive in km per hour, g is the acceleration due to gravity, is the distance between running faces of the rails and is the radius of the circular curve, the required super elevation is (A) gV²/GR (B) Rg/GV² (C) GR/gV² (D) GV²/gR

Last Answer : (D) GV²/gR

Description : Pick up the incorrect statement from the following. The super-elevation on roads is (A) Directly proportional to width of pavement (B) Directly proportional to velocity of vehicles (C) Inversely proportional to acceleration due to gravity (D) Inversely proportional to the radius of curvature

Last Answer : Answer: Option B

Description : If V is speed in km/hour and R is radius of the curve, the super-elevation e is equal to (A) V²/125 R (B) V²/225 R (C) V²/325 R

Last Answer : Answer: Option B

Description : With usual notations, the expression V²/gR represents  (A) Centrifugal force  (B) Centrifugal ratio  (C) Super elevation  (D) Radial acceleration 

Last Answer : (B) Centrifugal ratio

Description : If L is the length of a moving vehicle and R is the radius of curve, the extra mechanical width b to be provided on horizontal curves, (A) L/R (B) L/2R (C) L²/2R (D) L/3R

Last Answer : Answer: Option C

Description : Design of horizontal and vertical alignments, super-elevation, sight distance and grades, is worst affected by (A) Width of the vehicle (B) Length of the vehicle (C) Height of the vehicle (D) Speed of the vehicle

Last Answer : Answer: Option D

Description : Critical speed of rotation, N (in rps - rotation per second) of a trammel is equal to (where, g = acceleration due to gravity = 9.81 m/sec 2 and, r = radius of trammel, metre.) (A) (1/2π). √(g/r) (B) (1/π). √(g/r) (C) ½ √(g/r) (D) 2π. √(g/r)

Last Answer : (A) (1/2π). √(g/r)

Description : The convexity provided to the carriageway between the crown and edge of the pavement, is known as (A) Super-elevation (B) Camber (C) Height of the pavement (D) None of these

Last Answer : Answer: Option B

Description : Before providing super-elevation on roads, the portion of the carriageway between the crown and the outer edge is made (A) To have a reduced fall (B) Horizontal (C) To have slope of the camber on the other half of the carriageway (D) None of these

Last Answer : Answer: Option C

Description : If the designed speed on a circular curve of radius 1400 m is 80 km/hour, no super-elevation is provided, if the camber, is (A) 4 % (B) 3 % (C) 2 % (D) 1.7 %

Last Answer : Answer: Option C

Description : If the coefficient of friction on the road surface is 0.15 and a maximum super-elevation 1 in 15 is provided, the maximum speed of the vehicles on a curve of 100 metre radius, is (A) 32.44 km/hour (B) 42.44 kg/hour (C) 52.44 km/hour (D) 62.44 km/hour

Last Answer : Answer: Option C

Description : The length of a transition curve, is governed by (A) Rate of change of radial acceleration (B) Rate of change of super-elevation (C) Both (a) and (b) (D) Neither (a) nor (b)

Last Answer : Answer: Option C

Description : A particle is moving in a uniform circular motion with constant speed v along a circle of radius r. The acceleration-of the particle is – (1) zero (2) V/r (3) V/r² (4) V²/r

Last Answer : (4) V²/r Explanation: When a particle is moving in a uniform circular motion with constant speed and radius. the acceleration of the particle is given by v2/r. The particle will exhibit centripetal acceleration.

Description : An object moving in a circle of radius ‘r’ with a constant speed ‘v’ has a constant acceleration towards the center equal to A. v²⁄r B. v⁄r C. v²×r D. v×r

Last Answer : v²⁄r

Description : A district road with a bituminous pavement has a horizontal curve of 1000 m for a design speed of 75 km ph. The super-elevation is (A) 1 in 40 (B) 1 in 50 (C) 1 in 60 (D) 1 in 70

Last Answer : Answer: Option A

Description : If V is the design speed in km/hour and R is the radius of the curve of a hill road, the super￾elevation (A) e = V / 127 R (B) e = V² / 127 R (C) e = V ²/ 225 R (D) e = V / 225 R

Last Answer : Answer: Option C

Description : If A is the projected area of a vehicle in square metres, V is speed of the vehicles in kilometres per hour and C is a constant, then the wind resistance R to the moving vehicles, is given by (A) R = CAV (B) R = CAV2 (C) R = CAV3 (D) R = C 2AV

Last Answer : Answer: Option B

Description : If the number of lanes on the carriageway of a road is more than two, the total width of lane ways is equal to 3.0 m (A) + 0.60 m (B) + 0.70 m (C) + 0.90 m (D) + 1.50 m

Last Answer : Answer: Option B

Description : The width formation of a road means the width of (A) Carriageway (B) Pavement and shoulders (C) Embankment at ground level (D) Embankment at the top level

Last Answer : Answer: Option D

Description : According to IRC : 52-1973, for a single lane National Highway in hilly region, (A) Width of the carriageway must be 3.75 m (B) Shoulders on either side must be 1.25 m (C) Total width of the road-way must be 6.25 m (D) Total of the above

Last Answer : Answer: Option D

Description : According to Indian Road Congress, the width of carriageway, is (A) 3.75 m for single lane (B) 7.0 m for two lanes without raised kerbs (C) 7.5 m for two lanes with raised kerbs (D) All the above

Last Answer : Answer: Option D

Description : W is the weight of soil having a moisture content w. If V is the volume of proctor's mould, the dry density of the soil is (A) WV/(1 + w) (B) V/w (1 + w) (C) W/V(1 + w) (D) V (1 + w)/W

Last Answer : (C) W/V(1 + w)

Description : Two bodies of equal mass are moving in circular paths at equal speed. The first body moves in a circle whose radius is twice as great as that of the second. The ratio of the centripetal or radial acceleration of the first body to that of the second is: w) 1 to 4 x) 1 to 3 y) 1 to 2 z) 1 to 1

Last Answer : ANSWER: Y -- 1 TO 2

Description : Over taking time required for a vehicle with design speed 50 km ph and overtaking acceleration 1.25 m/sec2 to overtake a vehicle moving at a speed 30 km ph, is (A) 5.0 secs (B) 6.12 secs (C) 225.48 secs (D) 30 secs

Last Answer : Answer: Option B

Description : If the width of carriage way is 12.5 metres, outer edge 50 cm higher than the inner edge, the required super elevation is (A) 50 cm (B) 1 in 25 (C) 1 in 400 (D) 1 in 40

Last Answer : Answer: Option B

Description : Show that acceleration due to gravity at height h above the Earth’s surface is gh = g(R/R + h)^2

Last Answer : Show that acceleration due to gravity at height h above the Earth’s surface is gh = g \(\left(\frac{R}{R + h}\right)^2\) gh = g(R/R + h)2

Description : Extra widening required at a horizontal curve on a single lane hill road of radius 80 m for a design speed of 50 km ph and for a vehicle with wheel base 6.0 m is (A) 0.225 m (B) 0.589 m (C) 1.250 m (D) None of these

Last Answer : Answer: Option B

Description : Transition curves are introduced at either end of a circular curve, to obtain (A) Gradually decrease of curvature from zero at the tangent point to the specified quantity at the junction of the ... specified amount at the junction of the transition curve with main curve (D) None of these

Last Answer : (B) Gradual increase of super-elevation from zero at the tangent point to the specified amount at the junction of the transition curve with main curve

Description : If x% is the gradient of an alignment and y% is the gradient after proper super-elevation along a curved portion of a highway, the differential grade along the curve, is (A) (x + y) % (B) (x - y) % (C) (y - x) % (D) (y + x) %

Last Answer : Answer: Option C

Description : If the rate of change of the super-elevation along a curved portion of a 7 metre wide road is 1 in 150 and the maximum super-elevation allowed is 1 in 15, the maximum length of the transition curve to be provided at either end, is (A) 65 m (B) 70 m (C) 75 m (D) 80 m

Last Answer : Answer: Option B

Description : A charged particle (charge `q`) is moving in a circle of radius `R` with unifrom speed `v`. The associated magnetic moment `mu` is given by

Last Answer : A charged particle (charge `q`) is moving in a circle of radius `R` with unifrom speed `v`. The associated magnetic ... . `1/2 aqR` D. `1/2 q^(2)vR`

Description : An electron is moving on a circular path of radius `r` with speed `v` in a transverse magnetic field B. e/m for it will be

Last Answer : An electron is moving on a circular path of radius `r` with speed `v` in a transverse magnetic field B. e/m for it ... /Br` B. `B/rv` C. Brv D. `vr/B`

Description : If the rate of gain of radial acceleration is 0.3 m per sec3 and full centrifugal ratio is developed. On the curve the ratio of the length of the transition curve of same radius on road and railway, is (A) 2.828 (B) 3.828 (C) 1.828 (D) 0.828

Last Answer : (A) 2.828

Description : How far away from the surface of the Earth does the acceleration due to gravity become ½ of its value at the surface of Earth? It is at a (a) Distance equal to radius (b) Distance equal to half the radius (c) Distance equal to twice the radius (d) Distance equal to 0.414 times the radius

Last Answer : Ans:(d)

Description : The correct formula for calculating super-elevation for the hill roads, is (A) e = V²/254 R (B) e = V²/225 R (C) e = V²/278 R (D) e = V²/114 R

Last Answer : Answer: Option B

Description : To ensure that bullock carts may not overturn on curves, the maximum value of super-elevation, recommended by I.R.C., is (A) 1 in 10 (B) 1 in 12 (C) 1 in 15 (D) 1 in 20

Last Answer : Answer: Option C

Description : The advantage of providing super-elevation on roads, is (A) Higher speed of vehicles (B) Increased volume of traffic (C) Reduced maintenance cost of the roads (D) All the above

Last Answer : Answer: Option D

Description : Acceleration due to gravity (g) is mini- mum at?

Last Answer : Equatorial regions

Description : Acceleration due to gravity (g) is maxi- mum at?

Last Answer : polar regions

Description : At the Center of earth Acceleration due to gravity (g) is?

Last Answer : Zero

Description : The static deflection of a spring under gravity, when a mass of 1 kg is suspended from it, is 1 mm. Assume the acceleration due to gravity g = 10 m/s^2. The natural frequency of this spring-mass system (in rad/s) is A 100 B 150 C 200 D 250

Last Answer : A 100

Description : As we go from Equator to North pole the value of ‘g’, the acceleration due to gravity (1) remains the same (2) decreases (3) increases (4) None of the above

Last Answer : increases

Description : raft increases with increase in forward speed for most of the implement, mainly due to a) More rapid acceleration of any soil particles that is moved appreciably b) More working width c) Increased working depth d) Draft decreases with increase in speed of implement

Last Answer : a) More rapid acceleration of any soil particles that is moved appreciably

Description : Calculate the acceleration due to gravity at a height of 300 km from the surface of the Earth. (M = 5.98 × 10^24 kg, R = 6400 km).

Last Answer : Calculate the acceleration due to gravity at a height of 300 km from the surface of the Earth. (M = 5.98 × 1024 kg, R = 6400 km).

Description : State the formula for acceleration due to gravity at depth ‘d’ and altitude ‘h’ Hence show that their ratio is equal to ((R - d)/(R - 2h))

Last Answer : State the formula for acceleration due to gravity at depth d' and altitude h' Hence show that ... small as compared to the radius of the Earth.

Description : Geographic Information Systems can assist the location decision by a. ion by a. automating cen ating center of gr ter of gravity pro avity problems b. computerizing factor ... transportation method solutions e. giving good Internet Internet placement placement for virtual virtual storefronts

Last Answer : c. combining geography with demographic analysis

Description : An object with a mass of 5 kilograms is a distance of 5 meters above the surface of the earth. If the acceleration due to gravity is 10 meters per second squared, the potential energy of the object relative to the ... is: w) 10 joules x) 20 joules y) 100 joules z) 250 joules e) none of the above

Last Answer : ANSWER: Z -- 250 JOULES

Description : The acceleration due to gravity on the moon is 1.6 meters per second squared. If a pendulum is whose length is 6.4 meters is placed on the moon, its period will be: w) 1.57 seconds x) 3.14 seconds y) 12.56 seconds z) 25.12 seconds

Last Answer : not real

Description : The total length of a valley formed by two gradients - 3% and + 2% curve between the two tangent points to provide a rate of change of centrifugal acceleration 0.6 m/sec2 , for a design speed 100 kmph, is (A) 16.0 m (B) 42.3 m (C) 84.6 m (D) None of these

Last Answer : Answer: Option C

Description : Stopping distance of vehicles : When brakes are applied to a moving vehicle, the distance it travels before stopping is called stopping distance. It is an important factor for road safety and depends on ... the brake with the deceleration of 5m/s2. Find the stopping distance of the car -Science

Last Answer : Here u=72 km/hr = 72×10003600m/s=2072×10003600m/s=20 m/s , v=0 a= -5 m/s2 Now using the relation v2=u2+2asv2=u2+2as 0=(20)2+2×(−5)×s0=(20)2+2×(−5)×s s=40ms=40m