When a liquid is flowing through a pipe, the velocity of the liquid is
(A) Maximum at the centre and minimum near the walls
(B) Minimum at the centre and maximum near the walls
(C) Zero at the centre and maximum near the walls
(D) Maximum at the centre and zero near the walls

1 Answer

Answer :

Answer: Option A

Related questions

Description : At the center line of a pipe flowing under pressure where the velocity gradient is zero, the shear stress will be (A) Minimum (B) Maximum (C) Zero (D) Could be any value

Last Answer : Answer: Option D

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : A pitot tube is used to measure the (A) Velocity of flow at the required point in a pipe (B) Pressure difference between two points in a pipe (C) Total pressure of liquid flowing in a pipe (D) Discharge through a pipe

Last Answer : Answer: Option A

Description : The Bernoulli's equation is based on the assumption that (A) There is no loss of energy of the liquid flowing (B) The velocity of flow is uniform across any cross-section of the pipe (C) No force except gravity acts on the fluid (D) All of the above

Last Answer : Answer: Option D

Description : Venturimeter is used to (A) Measure the velocity of a flowing liquid (B) Measure the pressure of a flowing liquid (C) Measure the discharge of liquid flowing in a pipe (D) Measure the pressure difference of liquid flowing between two points in a pipe line

Last Answer : Answer: Option C

Description : The velocity profile for a Bingham plastic fluid flowing (under laminar conditions) in a pipe is (A) Parabolic (B) Flat (C) Flat near the wall and parabolic in the middle (D) Parabolic near the wall and flat in the middle

Last Answer : (D) Parabolic near the wall and flat in the middle

Description : Shear stress in a fluid flowing in a round pipe (A) Varies parabolically across the cross-section (B) Remains constant over the cross-section (C) Is zero at the centre and varies linearly with the radius (D) Is zero at the wall and increases linearly to the centre

Last Answer : (C) Is zero at the centre and varies linearly with the radius

Description : When a liquid moves through a pipe having a varying diameter, the pressure against the inside walls of the pipe will be: w) the same throughout x) lowest where the diameter is smallest y) lowest where the diameter is largest z) lowest where the velocity of flow is lowest 

Last Answer : ANSWER: X -- LOWEST WHERE THE DIAMETER IS SMALLEST

Description : If the velocity of flow as well as the diameter of the flowing pipe are respectively doubled through a pipe system in use since long, the head loss will thereafter be (a) Halved (b) Doubled (c) Increased 4 times (d) No change

Last Answer : (b) Doubled

Description : 03. If an incompressible liquid is continuously flowing through a pipe, the quantity of liquid passing per second is different at different sections. A) True B) False

Last Answer : B

Description : The magnitude of water hammer depends upon the (A) Elastic properties of the pipe material (B) Elastic properties of the liquid flowing through the pipe (C) Speed at which the valve is closed (D) All of the above

Last Answer : Answer: Option D

Description : The ratio of circumferential stress to the longitudinal stress in the walls of a cylindrical shell, due  to flowing liquid, is  (A) ½  (B) 1  (C) 1½  (D) 2 

Last Answer : (D) 2 

Description : Hydraulic mean depth (Dm) for a circular pipe of diameter 'D' flowing full is 0.25 D. For a circular channel, at Dm = 0.3 D, gives the condition for the maximum (A) Flow rate (B) Mean velocity (C) Both 'a' & 'b' (D) Neither 'a' nor 'b

Last Answer : (B) Mean velocity

Description : In a pressure penstock 4500 m long, water is flowing at a velocity of 4 m/s. If the velocity of the pressure wave traveling in the pipe, due sudden complete closure of a valve at the downstream end, is ... period of oscillation in second under frictionless conditions? (a) 6 (b) 8 (c) 9 (d) 11

Last Answer : (a) 6

Description : If a suspended body is struck at the centre of percussion, then the pressure on die axis passing through the point of suspension will be (A) Maximum (B) Minimum (C) Zero (D) Infinity

Last Answer : (C) Zero

Description : 14. The velocity of liquid flowing through an orifice varies with the available head of the liquid. A) Agree B) Disagree

Last Answer : A

Description : The velocity of the liquid flowing through the divergent portion of a Venturimeter (A) Remains constant (B) Increases (C) Decreases (D) Depends upon mass of liquid

Last Answer : Answer: Option C

Description : The flow in a pipe or channel is said to be non-uniform when (A) The liquid particles at all sections have the same velocities (B) The liquid particles at different sections have different ... The quantity of liquid flowing per second is constant (D) Each liquid particle has a definite path

Last Answer : Answer: Option B

Description : The flow in a pipe or channel is said to be uniform when (A) The liquid particles at all sections have the same velocities (B) The liquid particles at different sections have different ... The quantity of liquid flowing per second is constant (D) Each liquid particle has a definite path

Last Answer : Answer: Option A

Description : The loss of head due to viscosity for laminar flow in pipes is (where d = Diameter of pipe, l = Length of pipe, v w = Specific weight of the flowing liquid) (A) 4 (B) 8 (C) 16 (D) 32

Last Answer : Answer: Option D

Description : The self-cleansing velocity of water flowing through pipe lines, is A. 2 metres/sec B. 1 metre/sec C. 0.5 metre/sec D. 0.25 metre/sec

Last Answer : ANS: A

Description : he pressure drop per unit length of pipe incurred by a fluid 'X' flowing through pipe is Δp. If another fluid 'Y' having both the specific gravity & density just double of that of fluid 'X', flows through the same pipe ... then the pressure drop in this case will be (A) Δp (B) 2Δp (C) Δp 2 (D) Δp/2

Last Answer : (B) 2Δp

Description : A pipe of I.D. 4 m is bifurcated into two pipes of I.D. 2 m each. If the average velocity of water flowing through the main pipe is 5 m/sec, the average velocity through the bifurcated pipes is (A) 20 m/sec (B) 10 m/sec (C) 5 √2 m/sec (D) 5 m/sec

Last Answer : (B) 10 m/sec

Description : essure drop (Δp) for a fluid flowing in turbulent flow through a pipe is a function of velocity (V) as (A) V1.8 (B) V-0.2 (C) V2.7 (D) V

Last Answer : (D) V

Description : Water flowing at a 6m/s through a 60 mm pipe is suddenly channeled into a 30 mm pipe. What is the velocity in the small pipe?  a. 34m/s  b. 24m/s  c. 15m/s  d. 27m/s

Last Answer : 24m/s

Description : Heat transfer in the laminar sub-layer in case of a liquid flowing through a pipe, is mostly by (A) Eddies current (B) Conduction (C) Convection (D) None of these

Last Answer : (B) Conduction

Description : Which of the following situations can be approximated to a steady state heat transfer system? (A) A red hot steel slab (having outside surface temperature as 1300°C) exposed to the atmospheric air at ... flowing at the rate of 6 Kg/minute through a copper pipe exposed to atmospheric air at 35°C

Last Answer : (B) 10 kg of dry saturated steam at 8 kgf/cm2 flowing through a short length of stainless steel pipe exposed to atmospheric air at 35°C

Description : A liquid flows through a capillary tube. Then the velocity of the liquid is (a) Maximum at the walls of the tubs (b) Constant at all points in the cross section of the tube (c) Maximum along the axis of the tube (d) Independent of the pressure-head

Last Answer : Ans:(c)

Description : In a shaft rotated by a couple, the shear force varies (A) From zero at the centre to a maximum at the circumference (B) From minimum at the centre of maximum at the circumference (C) From maximum at the centre to zero at the circumference (D) Equally throughout the section

Last Answer : (A) From zero at the centre to a maximum at the circumference

Description : 19. The water hammer in pipes occurs due to sudden change in the velocity of flowing liquid A) Agree B) Disagree

Last Answer : A

Description : Pick out the wrong statement pertaining to fluid flow. (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5 (B) The Newtonian ... at the centre of the pipe (C) Navier-Stokes equation is applicable to the analysis of viscous flows

Last Answer : (A) The ratio of average velocity to the maximum velocity for turbulent flow of Newtonian fluid in circular pipes is 0.5

Description : The minimum water content at which the soil retains its liquid state and also possesses a small shearing strength against flowing, is known (A) Liquid limit (B) Plastic limit (C) Shrinkage limit (D) Permeability limit

Last Answer : (A) Liquid limit

Description : The total energy line lies over the centre line of the pipe by an amount equal to (A) Pressure head (B) Velocity head (C) Pressure head + velocity head (D) Pressure head - velocity head

Last Answer : Answer: Option C

Description : The hydraulic gradient line lies over the centre line of the pipe by an amount equal to the (A) Pressure head (B) Velocity head (C) Pressure head + velocity head (D) Pressure head - velocity head

Last Answer : Answer: Option A

Description : Water hammer is caused, when water flowing in a pipe is suddenly brought to rest by closing the valve. The extent of pressure thus produced due to water hammer depends on the (A) Pipe length (B) Fluid velocity in the pipe (C) Time taken to close the valve (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Reynolds number of a fluid flowing in a circular pipe is 10,000. What will be the Reynolds number when the fluid velocity is decreased by 30% & the pipe diameter is increased by 30%? (A) 9,100 (B) 13,000 (C) 7,000 (D) 2,550

Last Answer : (A) 9,100

Description : When a cylindrical vessel, containing some liquid, is rotated about its vertical axis, the liquid surface is depressed down at the axis of its rotation and rises up near the walls of the vessel on all sides. This type of flow is known as (A) Steady flow (B) Turbulent flow (C) Vortex flow

Last Answer : Answer: Option C

Description : In a free vortex motion, the radial component of velocity everywhere is (A) Maximum (B) Minimum (C) Zero (D) Nonzero and finite

Last Answer : Answer: Option C

Description : In a forced vortex, the velocity of flow everywhere within the fluid is (A) Maximum (B) Minimum (C) Zero (D) Nonzero finite

Last Answer : Answer: Option D

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : A vertical wall is subjected to a pressure due to one kind of liquid, on one of its sides. Which of the following statement is correct? (A) The pressure on the wall at the liquid level is maximum (B) ... and on the bottom of the wall is maximum (D) The pressure on the bottom of the wall is zero

Last Answer : Answer: Option C

Description : Pick out the wrong statement: (A) Greater is the kinematic viscosity of the liquid, greater is the thickness of the boundary layer (B) Blowers develop a maximum pressure of 2 atmospheres ( ... factor in case of turbulent flow of liquids in pipe depends upon relative roughness & Reynolds number

Last Answer : (C) Friction losses in pipe fittings are generally expressed in terms of velocity heads

Description : Barometer is used to measure (A) Velocity of liquid (B) Atmospheric pressure (C) Pressure in pipes and channels (D) Difference of pressure between two points in a pipe

Last Answer : Answer: Option B

Description : The loss of head at entrance in a pipe is (where v = Velocity of liquid in the pipe) (A) v²/2g (B) 0.5v²/2g (C) 0.375v²/2g (D) 0.75v²/2g

Last Answer : Answer: Option B

Description : The factional resistance of a pipe varies approximately with __________ of the liquid. (A) Pressure (B) Velocity (C) Square of velocity (D) Cube of velocit

Last Answer : Answer: Option C

Description : Which of the following statement is wrong? (A) A flow whose streamline is represented by a curve is called two dimensional flow. (B) The total energy of a liquid particle is the sum of potential energy, ... (D) A pitot tube is used to measure the velocity of flow at the required point in a pipe.

Last Answer : Answer: Option C

Description : The loss of head at exit of a pipe is (where v = Velocity of liquid in the pipe) (A) v²/2g (B) 0.5v²/2g (C) 0.375v²/2g (D) 0.75v²/2g

Last Answer : Answer: Option A

Description : According to Darcy's formula, the loss of head due to friction in the pipe is (where f = Darcy's coefficient, l = Length of pipe, v = Velocity of liquid in pipe, and d = Diameter of pipe) (A) flv²/2gd (B) flv²/gd (C) 3flv²/2gd (D) 4flv²/2gd

Last Answer : Answer: Option D

Description : The siphon will work satisfactorily, if the minimum pressure in the pipe is __________ vapour pressure of liquid. (A) Equal to (B) Less than (C) More than (D) None of these

Last Answer : Answer: Option C

Description : The pressure of the liquid flowing through the divergent portion of a Venturimeter (A) Remains constant (B) Increases (C) Decreases (D) Depends upon mass of liquid

Last Answer : Answer: Option C