The factional resistance of a pipe varies approximately with __________ of the liquid.
(A) Pressure
(B) Velocity
(C) Square of velocity
(D) Cube of velocit

1 Answer

Answer :

Answer: Option C

Related questions

Description : The fluid velocity varies as the cube of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop for __________ fluid. (A) Newtonian (B) Pseudo-plastic (C) Dilatent (D) Bingham plastic

Last Answer : (B) Pseudo-plastic

Description : The head loss in turbulent flow in a pipe varies (A) Directly as the velocity (B) Inversely as the square of the velocity (C) Approximately as the square of the velocity (D) Inversely as the square of the diameter

Last Answer : (C) Approximately as the square of the velocity

Description : The fluid velocity varies as the square of the cylindrical pipe diameter, in case of steady state laminar flow at constant pressure drop, for __________ fluid. (A) Newtonian (B) Dilatant (C) Pseudo-plastic (D) Non-Newtonian

Last Answer : (A) Newtonian

Description : The fluid velocity varies as the square root of the cylindrical pipe diameter in case of steady state laminar flow at constant pressure drop of __________ fluid. (A) Dilatent (B) Pseudo-plastic (C) Bingham plastic (D) Newtonian

Last Answer : (A) Dilatent

Description : Consider the following statements in respect of steady laminar flow through a circular pipe: 1. Shear stress is zero on the central axis of the pipe 2. Discharge varies directly with the viscosity of the fluid 3. Velocity is maximum at the ... 2 , 3 & 4 (b) 1 & 3 only (c) 2 & 4 only (d)3 & 4 only

Last Answer : (b) 1 & 3 only

Description : When a cylindrical vessel containing liquid is revolved about its vertical axis at a constant angular velocity, the pressure (A) Varies as the square of the radial distance B) Increases linearly as ... as the square of the radial distance (D) Decreases as the square of the radial distance

Last Answer : Answer: Option A

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (B) As (velocity)

Description : The head loss in turbulent flow in a pipe varies (A) As velocity (B) As (velocity) 2 (C) Inversely as the square of diameter

Last Answer : (C) Inversely as the square of diameter

Description : Power requirement of fans having constant wheel diameter varies __________ fan speed. (A) As square of (B) Directly as (C) As cube of (D) None of these

Last Answer : (C) As cube of

Description : At a constant speed of the centrifugal pump, it’s __________ the impeller diameter. (A) Capacity varies directly with (B) Head varies as the square of (C) Horsepower varies as the cube of (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Discharge in laminar flow through a pipe varies (A) As the square of the radius (B) Inversely as the pressure drop (C) Inversely as the viscosity (D) As the square of the diameter

Last Answer : (A) As the square of the radius

Description : The rated life of a bearing varies (a) directly as load (b) inversely as the square of the load (c) inversely as the cube of the load

Last Answer : (c) inversely as the cube of the load

Description : The rated life of a bearing varies A. Directly as load B. Inversely as square of load C. Inversely as cube of load D. Inversely as fourth power of load

Last Answer : C. Inversely as cube of load

Description : The rated life of a bearing varies (A) Directly as load (B) Inversely as square of load (C) Inversely as cube of load (D) Inversely as fourth power of load

Last Answer : (C) Inversely as cube of load

Description : The terminal velocity of a sphere setting in a viscous fluid varies as : (a) The Reynolds number (b) The square of its diameter (c) Directly proportional to the viscosity of the fluid (d) Its diameter

Last Answer : (b) The square of its diameter

Description : In Newton's law range, the terminal velocity of a solid spherical particle falling through a stationary fluid mass varies as the __________ of its diameter. (A) Inverse (B) Square root (C) Second power (D) First power

Last Answer : (B) Square root

Description : Barometer is used to measure (A) Velocity of liquid (B) Atmospheric pressure (C) Pressure in pipes and channels (D) Difference of pressure between two points in a pipe

Last Answer : Answer: Option B

Description : Which of the following statement is wrong? (A) A flow whose streamline is represented by a curve is called two dimensional flow. (B) The total energy of a liquid particle is the sum of potential energy, ... (D) A pitot tube is used to measure the velocity of flow at the required point in a pipe.

Last Answer : Answer: Option C

Description : A pitot tube is used to measure the (A) Velocity of flow at the required point in a pipe (B) Pressure difference between two points in a pipe (C) Total pressure of liquid flowing in a pipe (D) Discharge through a pipe

Last Answer : Answer: Option A

Description : Venturimeter is used to (A) Measure the velocity of a flowing liquid (B) Measure the pressure of a flowing liquid (C) Measure the discharge of liquid flowing in a pipe (D) Measure the pressure difference of liquid flowing between two points in a pipe line

Last Answer : Answer: Option C

Description : In continuous filtration (at a constant pressure drop), filtrate flow rate varies inversely as the (A) Square root of the velocity (B) Square of the viscosity (C) Filtration time only (D) Washing time only

Last Answer : (A) Square root of the velocity

Description : For a fluid rotating at constant angular velocity about vertical axis as a rigid body, the pressure intensity varies as the (A) Square of the radial distance (B) Radial distance linearly (C) Inverse of the radial distance (D) Elevation along vertical direction

Last Answer : (A) Square of the radial distance

Description : Which of the following varies as the square root of oil pressure during atomisation of fuel oil through a pressure jet burner? (A) Output & fineness (B) Velocity (C) Both (A) & (B) (D) None of these

Last Answer : Option C

Description : 14. The velocity of liquid flowing through an orifice varies with the available head of the liquid. A) Agree B) Disagree

Last Answer : A

Description : In case of laminar flow of fluid through a circular pipe, the (A) Shear stress over the cross-section is proportional to the distance from the surface of the pipe (B) Surface of velocity distribution is a ... occurs at a radial distance of 0.5 r from the centre of the pipe (r = pipe radius)

Last Answer : (B) Surface of velocity distribution is a paraboloid of revolution, whose volume equals half the volume of circumscribing cylinder

Description : The siphon will work satisfactorily, if the minimum pressure in the pipe is __________ vapour pressure of liquid. (A) Equal to (B) Less than (C) More than (D) None of these

Last Answer : Answer: Option C

Description : . The pressure and power requirement of a gas fan at constant speed & capacity varies __________ the gas density. (A) Directly as (B) Inversely as square root of (C) Inversely as (D) As square of

Last Answer : (A) Directly as

Description : The loss of head at entrance in a pipe is (where v = Velocity of liquid in the pipe) (A) v²/2g (B) 0.5v²/2g (C) 0.375v²/2g (D) 0.75v²/2g

Last Answer : Answer: Option B

Description : The Bernoulli's equation is based on the assumption that (A) There is no loss of energy of the liquid flowing (B) The velocity of flow is uniform across any cross-section of the pipe (C) No force except gravity acts on the fluid (D) All of the above

Last Answer : Answer: Option D

Description : The loss of head at exit of a pipe is (where v = Velocity of liquid in the pipe) (A) v²/2g (B) 0.5v²/2g (C) 0.375v²/2g (D) 0.75v²/2g

Last Answer : Answer: Option A

Description : When a liquid is flowing through a pipe, the velocity of the liquid is (A) Maximum at the centre and minimum near the walls (B) Minimum at the centre and maximum near the walls (C) Zero at the centre and maximum near the walls (D) Maximum at the centre and zero near the walls

Last Answer : Answer: Option A

Description : According to Darcy's formula, the loss of head due to friction in the pipe is (where f = Darcy's coefficient, l = Length of pipe, v = Velocity of liquid in pipe, and d = Diameter of pipe) (A) flv²/2gd (B) flv²/gd (C) 3flv²/2gd (D) 4flv²/2gd

Last Answer : Answer: Option D

Description : The terminal velocity of a small sphere settling in a viscous fluid varies as the (A) First power of its diameter (B) Inverse of the fluid viscosity (C) Inverse square of the diameter (D) Square of the difference in specific weights of solid & fluid

Last Answer : (B) Inverse of the fluid viscosity

Description : Hydraulic intensifier is used for increasing the (A) Rate of velocity of liquid supply (B) Rate of flow through delivery pipeline of a pump (C) Intensity of pressure of the liquid (D) Momentum rate through delivery pipe

Last Answer : (C) Intensity of pressure of the liquid

Description : Reynolds number for water flow through a tube of I.D. 5 cm is 1500. If a liquid of 5 centipoise viscosity and 0.8 specific gravity flows in the same pipe at the same velocity, then the pressure drop will (A) Increase (B) Decrease (C) Remain same (D) Data insufficient to predict pressure drop

Last Answer : (A) Increase

Description : Pick out the wrong statement: (A) Greater is the kinematic viscosity of the liquid, greater is the thickness of the boundary layer (B) Blowers develop a maximum pressure of 2 atmospheres ( ... factor in case of turbulent flow of liquids in pipe depends upon relative roughness & Reynolds number

Last Answer : (C) Friction losses in pipe fittings are generally expressed in terms of velocity heads

Description : When a liquid moves through a pipe having a varying diameter, the pressure against the inside walls of the pipe will be: w) the same throughout x) lowest where the diameter is smallest y) lowest where the diameter is largest z) lowest where the velocity of flow is lowest 

Last Answer : ANSWER: X -- LOWEST WHERE THE DIAMETER IS SMALLEST

Description : The kinetic energy of a stone falling near the earth's surface through a vacuum increases with the: w) square root of its velocity x) cube root of its velocity y) square of its velocity z) cube of its velocity

Last Answer : ANSWER: Y -- SQUARE OF ITS VELOCITY

Description : During agitation of liquids, power consumption during laminar flow is not proportional to the (A) Density of the liquid (B) Viscosity of the liquid (C) Cube of impeller diameters (D) Square of rotational speed

Last Answer : (A) Density of the liquid

Description : The volume of a sphere (V) varies directly as the cube of its radius. The volume of the sphere of radius 3 cm is ` 36 pi cm^(3)`. What is the volume o

Last Answer : The volume of a sphere (V) varies directly as the cube of its radius. The volume of the sphere of ... What is the volume of a sphere of radius 15 cm?

Description : The volume of a sphere (V) varies directly as the cube of its radius. The volume of the sphere of radius 3 cm is ` 36 pi cm^(3)`. What is the volume o

Last Answer : The volume of a sphere (V) varies directly as the cube of its radius. The volume of the sphere of ... What is the volume of a sphere of radius 15 cm?

Description : x varies directly as the cube of y, x is 32 when y is 4, then what is the value of y when x is 108 ?

Last Answer : x varies directly as the cube of y, x is 32 when y is 4, then what is the value of y when x is 108 ?

Description : power of absorbing type hydraulic dynamometer varies as a) cube of rpm b) fifth power of the diameter c) none of the above d) both (a) and (b)

Last Answer : d) both (a) and (b)

Description : Suction lift of a pump depends upon  (A) Atmospheric pressure  (B) Water temperature  (C) Velocity of water in suction pipe  (D) All the above 

Last Answer : (D) All the above 

Description : The total energy line lies over the centre line of the pipe by an amount equal to (A) Pressure head (B) Velocity head (C) Pressure head + velocity head (D) Pressure head - velocity head

Last Answer : Answer: Option C

Description : A nozzle placed at the end of a water pipe line discharges water at a (A) Low pressure (B) High pressure (C) Low velocity (D) High velocity

Last Answer : Answer: Option D

Description : At the center line of a pipe flowing under pressure where the velocity gradient is zero, the shear stress will be (A) Minimum (B) Maximum (C) Zero (D) Could be any value

Last Answer : Answer: Option D

Description : A streamline is defined as the line (A) Parallel to central axis flow (B) Parallel to outer surface of pipe (C) Of equal velocity in a flow (D) Along which the pressure drop is uniform

Last Answer : Answer: Option C

Description : The hydraulic gradient line lies over the centre line of the pipe by an amount equal to the (A) Pressure head (B) Velocity head (C) Pressure head + velocity head (D) Pressure head - velocity head

Last Answer : Answer: Option A

Description : In a pressure penstock 4500 m long, water is flowing at a velocity of 4 m/s. If the velocity of the pressure wave traveling in the pipe, due sudden complete closure of a valve at the downstream end, is ... period of oscillation in second under frictionless conditions? (a) 6 (b) 8 (c) 9 (d) 11

Last Answer : (a) 6