Enthalpy changes over a constant pressure path are always zero for __________ gas.
(A) Any
(B) A perfect
(C) An easily liquefiable
(D) A real

1 Answer

Answer :

(B) A perfect

Related questions

Description : __________ decreases during adiabatic throttling of a perfect gas. (A) Entropy (B) Temperature (C) Enthalpy (D) Pressure

Last Answer : (D) Pressure

Description : The adiabatic throttling process of a perfect gas is one of constant enthalpy (A) In which there is a temperature drop (B) Which is exemplified by a non-steady flow expansion (C) Which can be performed in a pipe with a constriction (D) In which there is an increase in temperature

Last Answer : (C) Which can be performed in a pipe with a constriction

Description : For an ideal gas, the enthalpy (A) Increases with rise in pressure (B) Decreases with rise in pressure (C) Is independent of pressure (D) Is a path function

Last Answer : (C) Is independent of pressure

Description : Pick out the correct statement. (A) Like internal energy and enthalpy, the absolute value of standard entropy for elementary substances is zero (B) Melting of ice involves increase in enthalpy and ... of an ideal gas depends only on its pressure (D) Maximum work is done under reversible conditions

Last Answer : (D) Maximum work is done under reversible conditions

Description : Isentropic process means a constant __________ process. (A) Enthalpy (B) Pressure (C) Entropy (D) None of these

Last Answer : (C) Entropy

Description : Throttling (Joule-Thomson effect) process is a constant __________ process. (A) Enthalpy (B) Entropy (C) Pressure (D) None of these

Last Answer : (A) Enthalpy

Description : Specific __________ does not change during phase change at constant temperature and pressure. (A) Entropy (B) Gibbs energy (C) Internal energy (D) Enthalpy

Last Answer : (B) Gibbs energy

Description : An ideal gas is compresses isothermally. The enthalpy change is  a. Always negative  b. Always positive  c. zero  d. undefined

Last Answer : zero

Description : A perfect gas (A) Does not satisfy PV = nRT (B) Is incompressible and has zero viscosity (C) Has constant specific heat (D) Can’t develop shear stresses

Last Answer : (C) Has constant specific heat

Description : Moist air is cooled along the line of constant __________ , when it is passed over a cold & dry cooling coil, such that no condensation occurs? (A) Enthalpy (B) Relative humidity (C) Wet bulb temperature (D) Dew point temperature

Last Answer : (D) Dew point temperature

Description : According to Gay-Lussac law, the absolute pressure of a given mass of a perfect gas varies __________ as its absolute temperature, when the volume remains constant.  A. directly  B. indirectly

Last Answer : Answer: A

Description : For which of the following substances, the internal energy and enthalpy are the functions of temperature only  (a) any gas  (b) saturated steam  (c) water  (d) perfect gas  (e) superheated steam.

Last Answer : Answer : d

Description : Categorize point and path functions from following. (pressure, heat, internal energy, temperature, work, total enthalpy.)

Last Answer : Point function-Pressure, temperature, internal energy, total enthalpy Path function-Heat, Work

Description : 1 mole of a real gas changes it state from state-A(2bar, 3L, 100 K) to state -B (2bar, 5L, 200 K) at constant pressure and finally to state-C (3bar, 1

Last Answer : 1 mole of a real gas changes it state from state-A(2bar, 3L, 100 K) to state -B (2bar, 5L, 200 K) at ... U_(AC) = 2200 J` D. `DeltaU_(AC) = 1770 J`

Description : A perfect gas (A) Has constant viscosity (B) Has zero viscosity (C) Is in compressible (D) None of the above

Last Answer : Answer: Option D

Description : If an ideal solution is formed by mixing two pure liquids in any proportion, then the __________ of mixing is zero (A) Enthalpy (B) Volume (C) Both 'a' & 'b' (D) Neither 'a' nor 'b'

Last Answer : (C) Both 'a' & 'b'

Description : What happens to the internal energy of water at reference temperature where enthalpy is zero?  a. Becomes negative  b. Becomes positive  c. Remains constant  d. Cannot be defined

Last Answer : Becomes negative

Description : Pressure-enthalpy chart is useful in refrigeration. The change in internal energy of an ideal fluid used in ideal refrigeration cycle is (A) Positive (B) Negative (C) Zero (D) Infinity

Last Answer : C) Zero

Description : Throttling process is a/an __________ process. (A) Reversible and isothermal (B) Irreversible and constant enthalpy (C) Reversible and constant entropy (D) Reversible and constant enthalpy

Last Answer : (B) Irreversible and constant enthalpy

Description : Joule-Thomson effect i.e., a throttling process is a constant __________ process. (A) Entropy (B) Temperature (C) Internal energy (D) Enthalpy

Last Answer : (D) Enthalpy

Description : If a solid is compressed adiabatically in its elastic range, its __________ remains constant (A) Internal energy (B) Enthalpy (C) Entropy (D) Temperature

Last Answer : (C) Entropy

Description : Pick out the wrong statement. (A) At constant pressure, solubility of a gas in a liquid diminishes with rise in temperature (B) Normally, the gases which are easily liquefied are more soluble ... (D) At constant pressure, solubility of a gas in a liquid increases with rise in temperature

Last Answer : (A) At constant pressure, solubility of a gas in a liquid diminishes with rise in temperature

Description : Pick out the correct statement. (A) Entropy and enthalpy are path functions (B) In a closed system, the energy can be exchanged with the surrounding, while matter cannot be exchanged (C) All the natural processes are reversible in nature (D) Work is a state function

Last Answer : (C) All the natural processes are reversible in nature

Description : For a constant pressure reversible process, the enthalpy change (ΔH) of the system is (A) Cv.dT (B) Cp.dT (C) ∫ Cp.dT (D) ∫ Cv.dT

Last Answer : (C) ∫ Cp.dT

Description : Superheating of steam is done at constant (A) Enthalpy (B) Entropy (C) Pressure (D) Volume

Last Answer : Option C

Description : Extensive property of a system is one whose value  (a) depends on the mass of the system like volume  (b) does not depend on the mass of the system, like temperature, pressure, etc.  (c) is not ... the state  (d) is dependent on the path followed and not on the state  (e) is always constant.

Last Answer : Answer : a

Description : A particle of mass m is moving along a straight path through the origin of coordinates with a velocity v. The angular momentum of the particle about the origin (a) mv (b) Depends on its distance from origin (c) Is zero (d) Changes from positive to negative as it passes through the origin

Last Answer : Ans:(c)

Description : For perfect gas a. cp – cv = R b. cp + cv = R c. cp / cv = R d. cp X cv = R Where cp & cv are specific heats at constant pressure and volume.

Last Answer : ANSWER a. CP – CV = R

Description : A perfect gas has a value of R= 319.2 J/ kf.K and k= 1.26. If 120 kJ are added to 2.27 kf\g of this gas at constant pressure when the initial temp is 32.2°C? Find T2.  a. 339.4 K  b. 449.4 K  c. 559.4K  d. 669.4K formula: cp = kR/ k-1 Q= mcp(T2-T1)

Last Answer : 339.4 K

Description : For a perfect gas, according to Boyle’s law (where p = Absolute pressure, v = Volume, and T = Absolute temperature)  A. p v = constant, if T is kept constant  B. v/T = constant, if p is kept constant  C. p/T = constant, if v is kept constant  D. T/p = constant, if v is kept constant

Last Answer : Answer: A

Description : The absolute pressure of a given mass of a perfect gas varies inversely as its volume, when the temperature remains constant. This statement is known as Charles’ law.  A. Yes  B. No

Last Answer : Answer: B

Description : A perfect gas at 27°C is heated at constant pressure till its volume is double. The final temperature is  (a) 54°C  (b) 327°C  (c) 108°C  (d) 654°C  (e) 600°C

Last Answer : Answer : b

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : According to Gay-Lussac law for a perfect gas, the absolute pressure of given mass varies directly as  (a) temperature  (b) absolute  (c) absolute temperature, if volume is kept constant ... , if temperature is kept constant  (e) remains constant,if volume and temperature are kept constant.

Last Answer : Answer : c

Description : For an incompressible fluid, the __________ is a function of both pressure as well as temperature. (A) Internal energy (B) Enthalpy (C) Entropy (D) All (A), (B) & (C)

Last Answer : (B) Enthalpy

Description : The expression, ∆G = nRT. ln(P2/P1), gives the free energy change (A) With pressure changes at constant temperature (B) Under reversible isothermal volume change (C) During heating of an ideal gas (D) During cooling of an ideal gas

Last Answer : (A) With pressure changes at constant temperature

Description : Consider the reaction: `N_(2) + 3H_(2) hArr 2NH_(3)` carried out at constant pressure and temperature. If `DeltaH` and `DeltaU` are change in enthalpy

Last Answer : Consider the reaction: `N_(2) + 3H_(2) hArr 2NH_(3)` carried out at constant pressure and temperature. If ` ... Delta H = 0` D. `Delta H = Delta U`

Description : Vertical lines on pressure-enthalpy chart show constant (a) pressure lines (b) temperature lines (c) total heat lines (d) entropy lines

Last Answer : Ans: c

Description : On the pressure-enthalpy diagram, condensation and de-superheating is represented by a horizontal line because theprocess (a) takes place at constant pressure (b) takes place at constant temperature (c) takes place at constant entropy (d) takes place at constant enthalpy

Last Answer : Ans: a

Description : Short horizontal lines on pressure-enthalpy chart show (a) constant pressure lines (b) constant temperature lines (c) constant total heat lines (d) constant entropy lines

Last Answer : Ans: a

Description : Which of the following statement is true? A. the chart is plotted for pressure equal to 760mm Hg B. the constant wbt line represents adiabatic saturation process C. the constant wbt line coincides with constant enthalpy line D. all of the mentioned

Last Answer : ANSWER : D

Description : What are the names given to constant temperature, constant pressure, constant volume, constant internal energy, constant enthalpy, and constant entropy processes.

Last Answer : Isothermal, isochroic, isobaric, free expression, throttling and adiabatic processes respectively.

Description : Change in enthalpy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : a

Description : Change in enthalpy of a system is the heat supplied at  (a) constant pressure  (b) constant temperature  (c) constant volume  (d) constant entropy  (e) N.T.P. condition.

Last Answer : Answer : a

Description : If value of n is infinitely large in a polytropic process pV” = C, then the process is known as constant  (a) volume  (b) pressure  (c) temperature  (d) enthalpy  (e) entropy

Last Answer : Answer : a

Description : Which of the following parameters is constant for a mole for most of the gases at a given temperature and pressure  (a) enthalpy  (b) volume  (c) mass  (d) entropy  (e) specific volume.

Last Answer : Answer : b

Description : Gas being heated at constant volume is undergoing the process of.  a. isometric  b. specific heat  c. enthalpy  d. isothermal

Last Answer : isometric

Description : Gibbs free energy of a pure fluid approaches __________ as the pressure tends to zero at constant temperature. (A) Infinity (B) Minus infinity (C) Zero (D) None of these

Last Answer : (B) Minus infinity

Description : Enthalpy of a gas depends upon its (A) Temperature (B) Mass (C) Volume (D) Pressure

Last Answer : (A) Temperature

Description : The partial molar enthalpy of a component in an ideal binary gas mixture of composition Z, at a temperature T and pressure P, is a function only of (A) T (B) T and P (C) T, P and Z (D) T and Z

Last Answer : (B) T and P