In counter flow compared to parallel flow,

(A) LMTD is greater

(B) Less surface area is required for a given heat transfer rate

(C) Both (A) and (B)

(D) More surface area is required for a given heat transfer rate


1 Answer

Answer :

(C) Both (A) and (B)

Related questions

Description : LMTD for evaporators & condensers for a given terminal parameters & set of conditions for counter-flow is equal to that for parallel flow. In such heat exchangers, with one of the fluids condensing or evaporating, the surface ... Parallel (B) Mixed (C) Counter flow (D) Same in either 'a', b' or 'c'

Last Answer : (D) Same in either 'a', b' or 'c'

Description : case of condensers & evaporators operating under given terminal conditions, LMTD (logarithmic mean temperature difference) for counter flow as compared to that for parallel flow is (A) More (B) Less (C) Equal (D) Much more

Last Answer : Option C

Description : LMTD for counter-flow and parallel flow heat exchanger will be the same, when the (A) Cold fluid is heated to a certain temperature by condensing steam (isothermal fluid) (B) Outlet temperature of ... temperature of hot fluid is less than the outlet temperature of the cold fluid (D) None of these

Last Answer : (A) Cold fluid is heated to a certain temperature by condensing steam (isothermal fluid)

Description : Pick out the wrong statement. (A) The controlling resistance in case of heating of air by condensing steam is in the air film (B) The log mean temperature difference (LMTD) for ... a pure fluid at a given pressure from liquid to vapor or vice-versa occurs at saturation temperature

Last Answer : (C) In case of a 1 - 2 shell and tube heat exchanger, the LMTD correction factor value increases sharply, when a temperature cross occurs

Description : In a liquid-liquid heat exchanger, for the same process temperature, the ratio of the LMTD in parallel flow to the LMTD in counter flow is always (A) < 1 (B) > 1 (C) 1 (D) ∞

Last Answer : (A) < 1

Description : Correction is applied to LMTD for __________ flow. (A) Parallel (B) Counter (C) Cross (D) None of these

Last Answer : (C) Cross

Description : Out of the following four assumptions used in the derivation of theequation for LMTD [LMTD = (∆t1 - ∆t2 )/ln(∆t1 /∆t2 )], which one is subject to the largest deviation in practice ? (A) Constant ... (B) Constant rate of fluid flow (C) Constant specific heat (D) No partial phase change in the system

Last Answer : (B) Constant rate of fluid flow

Description : In a heat exchanger, the rate of heat transfer from the hot fluid to the cold fluid (A) Varies directly as the area and the LMTD (B) Directly proportional to LMTD and inversely proportional to the area (C) Varies as square of the area (D) None of these

Last Answer : (A) Varies directly as the area and the LMTD

Description : A 2-4 heat exchanger involves (A) Only counter-flow of fluids (B) Only parallel-flow of fluids (C) Both counter and parallel-flow of the fluids (D) Smaller pressure drop compared to 1-2 exchanger

Last Answer : (C) Both counter and parallel-flow of the fluids

Description : In a parallel flow heat exchanger, if the outlet temperature of hot and cold fluids are the same, then the log mean temperature difference (LMTD) is (A) Minimum (B) Maximum (C) Zero (D) Infinity

Last Answer : (C) Zero

Description : Log mean temperature difference (LMTD) cannot be used, if (A) Heat transfer co-efficient over the entire heat exchanger is not constant (B) There exists an unsteady state (C) The heat capacity is not constant and there is a phase change (D) None of these

Last Answer : (D) None of these

Description : For a heat exchanger, will the overall heat transfer coefficient increase along with an increase in LMTD (log mean temperature difference) around the unit?

Last Answer : The overall heat transfer coefficient is generally weakly dependent on temperature. As the temperatures of the fluids change, the degree to which the overall heat transfer coefficient will be affected depends ... with temperature as I've noted and the U-value will decrease over time with fouling).

Description : A process stream of dilute aqueous solution flowing at the rate of10 Kg.s -1 is to be heated. Steam condensate at 95°C is available for heating purpose, also at a rate of 10 Kg.s -1 . A 1 ... side (C) Parallel flow with process stream on shell side (D) Parallel flow with process stream on tube side

Last Answer : (A) Counter flow with process stream on shell side

Description : Maximum heat transfer rate is achieved in __________ flow. (A) Co-current (B) Counter-current (C) Turbulent (D) Laminar

Last Answer : (C) Turbulen

Description : LMTD correction factor which is to be applied for a cross-flow heat exchanger increases with increase in the number of shell passes. Its value for a single pass cross flow heat exchanger is (A) 0 (B) 1 (C) > 1 (D) < 1

Last Answer : (D) < 1

Description : Pick out the wrong statement. (A) Longer tubes are less expensive per unit heat transfer area as compared to shorter tubes (B) A cost index is merely a number for a given year ... butt welded joints are less expensive compared to lap welded joints, because squaring of plates is not necessary

Last Answer : (D) Plates with butt welded joints are less expensive compared to lap welded joints, because squaring of plates is not necessary

Description : Parallel straight line pattern of temperature distribution for both hot and cold fluids is observed in case of heat exchanger of the type (A) Parallel flow with equal heat capacities (B) Counter ... (C) Counter flow with unequal heat capacities (D) Parallel flow with unequal heat capacities

Last Answer : (B) Counter flow with equal heat capacities

Description : Which of the following is not applicable to fluidised bed combustion of coal? (A) It cannot burn low grade coal (B) It achieves higher fuel combustion efficiency (C) Less heat transfer surface area is required in boilers (D) None of these

Last Answer : (A) It cannot burn low grade coal

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : Pick out the wrong statement about nucleate boiling. (A) Bubble generation is by expansion of entrapped gas/vapour at small cavities in the surface (B) Surface temperature is greater than the saturation ... less than that in film boiling (D) The temperature is less than that of film boiling

Last Answer : (D) The temperature is less than that of film boiling

Description : Pick out the correct statement about the condensation. (A) Filmwise condensation gives a lower heat transfer rate than the dropwise condensation (B) Suitable coating or vapour additive is used to promote film ... place on it (D) Reynolds number of condensing liquid is based on its mass flow rate

Last Answer : (B) Suitable coating or vapour additive is used to promote film wise condensation

Description : Pick out the wrong statement. (A) The Reynolds analogy for mass transfer is given by Lewis relation and is applicable, when Schmidt number is one (B) Sherwood number for flow in pipes can be expressed ... flux of a component A in binary mixture of A and B is given by - Dab'.dCA/dz

Last Answer : (C) According to film theory for equimolar counter diffusion, the mass transfer coefficient is given by DAB(B)P - 3, Q - 2

Description : In a 1-1 concurrent heat exchanger, if the tube side fluid outlet temperature is equal to the shell side fluid outlet temperature, then the LMTD is (A) ∞ (B) 0 ... temperature (D) Equal to the difference between hot fluid inlet temperature and cold fluid outlet temperature

Last Answer : (B) 0

Description : The outlet temperature of cooling water in a heat exchanger is generally not allowed to exceed above 50°C in industrial practice mainly to avoid (A) Its evaporation loss (B) Excessive corrosion (C) Uneconomic LMTD (D) Decrease in heat exchanger efficiency

Last Answer : (B) Excessive corrosion

Description : It is not recommended to use a 1-2 shell and tube heat exchanger for a particular heat duty, whenever the LMTD correction factor is (A) > 0.75 (B) < 0.75 (C) < 0.50 (D) < 0.25

Last Answer : (B) < 0.75

Description : LMTD can't be used as such without a correction factor for the (A) Multipass heat exchanger (B) Baffled heat exchanger (C) Condensation of mixed vapour in a condenser (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : For a multipass shell and tube heat exchanger, the LMTD correction factor is always (A) 1 (B) > 1 (C) < 1 (D) Between 1 & 2

Last Answer : (C) < 1

Description : In a shell and tube heat exchanger, square pitch compared to triangular pitch (A) Gives a higher shell side pressure drop (B) Gives a lower shell side pressure drop (C) Can pack more surface area into a shell of given diameter (D) None of these

Last Answer : (A) Gives a higher shell side pressure drop

Description : Pick out the wrong statement. (A) The condensing film co-efficient is about 3 times lower for vertical condenser as compared to the equivalent horizontal condenser for identical situation ( ... in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Last Answer : (D) Overall heat transfer co-efficient in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Description : Double pipe heat exchangers are used (A) When heat transfer area required is very high (B) When heat transfer area required is very low, i.e. (100-200 ft 2 ). (C) Because it occupies less floor area (D) Because it is less costly

Last Answer : (B) When heat transfer area required is very low, i.e. (100-200 ft 2 )

Description : Baffles in the shell side of a shell and tube heat exchanger (A) Increase the cross-section of the shell side liquid (B) Force the liquid to flow parallel to the bank (C) Increase the shell side heat transfer co-efficient (D) Decrease the shell side heat transfer co-efficient

Last Answer : (C) Increase the shell side heat transfer co-efficient

Description : Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer ... (C) Temperature of the fin end (D) Constant temperature equal to that of the base

Last Answer : (D) Constant temperature equal to that of the base

Description : Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger? (A) Tube side pressure drop and the heat transfer rate (B) Convective heat transfer co-efficient (C) Effective tube surface area for convective heat transfer (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : A multiple effect evaporator as compared to a single effect evaporator of the same capacity has (A) Lower heat transfer area (B) Lower steam economy (C) Higher steam economy (D) Higher solute concentration in the product

Last Answer : (C) Higher steam economy

Description : Pick out the correct statement. (A) Higher is the temperature of the radiating body, higher is the wavelength of radiation (B) Logarithmic mean area is used for calculating the heat flow rate ... ) Solid angle subtended by the finite surface at the radiating element is called the angle of incidence

Last Answer : (B) Logarithmic mean area is used for calculating the heat flow rate through a thick walled cylinder

Description : Pick out the wrong statement. (A) Mechanical agitation is required, if the system has low interfacial tension (B) Sieve tray towers are generally used for systems having low ... Prandtl analogy for heat and mass transfer considers the transfer through both laminar and turbulent layers

Last Answer : (A) Mechanical agitation is required, if the system has low interfacial tension

Description : A concentric double pipe heat exchanger as compared to the shell and tube heat exchanger for the same heat load requires (A) Less heating surface (B) More space (C) Lower maintenance cost (D) None of these

Last Answer : (B) More space

Description : Arithmetic mean area can be used in heat transfer problem to calculate the heat flow by conduction through a cylinder which is (A) Thin walled having the value of Ao Ai /< 2 (B) Thick walled (C) Having the value of Ao /Ai > 2 (D) Both (B) and (C)

Last Answer : (A) Thin walled having the value of Ao Ai /< 2

Description : Gyratory crushers compared to the reciprocating jaw crushers (A) Have greater capacity per unit of discharge area (B) Crush intermittently (C) Are less suitable for coarse materials (D) Have less steady power consumption

Last Answer : (A) Have greater capacity per unit of discharge area

Description : In a counter-current liquid extractor (A) Both liquids flow at fixed rate (B) Both liquids can have any desired flow rate (C) Only one of the liquids may be pumped at any desired rate (D) Liquid’s flow rate depends upon the temperature and pressure

Last Answer : (C) Only one of the liquids may be pumped at any desired rate

Description : In case of parallel flow heat exchanger, the lowest temperature theoretically attainable by the hot fluid is __________ the outlet temperature of the cold fluid. (A) Equal to (B) More than (C) Less than (D) Either more or less than (depending upon the fluid)

Last Answer : (A) Equal to

Description : Binary distillation involves the mass transfer by __________ at the gas￾liquid interface. (A) Unidirectional diffusion from liquid to gas phase (B) Unidirectional diffusion from gas to liquid phase (C) Either 'a' or 'b' (D) A counter diffusion at an almost equal molar rate

Last Answer : (D) A counter diffusion at an almost equal molar rate

Description : Combustion of pulverised coal as compared to that of lump coal (A) Develops a non-luminous flame (B) Develops a low temperature flame (C) Can be done with less excess air (D) Provides a lower rate of heat release

Last Answer : (C) Can be done with less excess ai

Description : For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus-Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of (A) 1 (B) 1.74 (C) 6.1 (D) 37

Last Answer : (C) 6.1

Description : A fluid is flowing inside the inner tube of a double pipe heat exchanger with diameter 'd'. For a fixed mass flow rate, the tube side heat transfer co￾efficient for turbulent flow conditions is proportional to (A) d 0.8 (B) d -0.2 (C) d -1 (D) d -1.8

Last Answer : (B) d -0.2

Description : A single pass air heater is connected to a two pass unit. For the air flow rate and other conditions remaining the same, the film heat transfer co￾efficient for air will vary in the ratio of (A) 2 (B) 2 0.8 (C) 2 0.2 (D) 2 0.5

Last Answer : (B) 2 0.8

Description : Maximum heat transfer rate is obtained in __________ flow. (A) Laminar (B) Turbulent (C) Creeping (D) Transition region

Last Answer : (B) Turbulent