in the figure shown, KJ=?

1 Answer

Answer :

converse of the angle bisector theorem

Related questions

Description : what- Two similar hexagonal swimming pools are shown.What is KJ Round to the nearest tenth?

Last Answer : 14.4 m

Description : A man pulls a cart with 100 N force from rest with an acceleration of 10 m/sec2 for 10 seconds. The work done by him is a.500 KJ b.50.96 KJ c.101.92 KJ d.None of the above e.Tapered bearing

Last Answer : a. 500 KJ

Description : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at `300 K` If `C_(P,A) = 20 J//K mol` and `C_(P,B) = 20

Last Answer : For the given reaction , `A(g) rarr 2B(g) , Delta_(r)H= 30 kJ//"mole" Delta_(r)S = 150 J//mol` at ... G` is negative D. At `T = 200, Delta G` is zero

Description : A person takes `1//2` kg of cheese sandwitches of energy equivalent to `813 kJ`. Suppose that all the energy is lost only through perspiration, what m

Last Answer : A person takes `1//2` kg of cheese sandwitches of energy equivalent to `813 kJ`. Suppose that all the energy is ... A. 360g B. 3.6 g C. 180g D. 190g

Description : The correct values of ionization enthalpies(in KJ `"mol"^(-1)`) of Si, P, Cl, and S respectively are: a)`786, 1012, 999, 1256` b)`1012, 786, 999, 1256

Last Answer : The correct values of ionization enthalpies(in KJ `"mol"^(-1)`) of Si, P, Cl, and S respectively are: ... . `786,1012,1256,999` D. `786,999,1012,1256`

Description : An element has successive ionization enthalpies as 940 (first),2080,3090,4140,7030,7870,16000 and 19500 kJ `mol^(-1)`. To which group of the periodic

Last Answer : An element has successive ionization enthalpies as 940 (first),2080,3090,4140,7030,7870,16000 and 19500 kJ `mol^(- ... belong? A. 14 B. 15 C. 16 D. 17

Description : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_(2),Delta H=-283.2` KJ the heat of reacti

Last Answer : From the thermochemical reactions, C(graphite)`+1//2O_(2)rarr CO , Delta H = -110.5` KJ `CO+1//2O_(2)rarr CO_( ... 7` KJ C. `-172.7` KJ D. `+172.7` KJ

Description : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2)O(l) Delta =-286 KJ` `C_(2)H_(2)(g)+(5)/(2)O_(2)(g)ra

Last Answer : Given that - `2C(s)+2O_(2)(g)rarr 2CO_(2)(g) Delta H = -787 KJ` `H_(2)(g)+ 1//2O_(2)(g)rarr H_(2) ... 1802` KJ B. `-1802` KJ C. `-800` KJ D. `+237` KJ

Description : `2CO_((g))+O_(2(g))rarr 2CO_(2(g))+X` KJ In the above equation X KJ refers to :

Last Answer : `2CO_((g))+O_(2(g))rarr 2CO_(2(g))+X` KJ In the above equation X KJ refers to : ... Heat of vapourisation C. Heat of reaction D. Heat of sublimation

Description : The heat of combustion of carbon and monoxide are -394 and -285 KJ `mol^(-1)` respectively. The heat of formation of CO in KJ `mol^(-1)` is :-

Last Answer : The heat of combustion of carbon and monoxide are -394 and -285 KJ `mol^(-1)` respectively. The heat of formation ... B. `-109` C. `+218` D. `-218`

Description : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat of combustion when one mole of graphite bu

Last Answer : Given standard enthalpy of formation of `CO(-110 "KJ mol"^(-1))` and `CO_(2)(-394 "KJ mol"^(-1))`. The heat ... B. `-284` KJ C. `-394` KJ D. `-504` KJ

Description : The enthalpy of a reaction at 273 K. is -3.57 KJ. What will be the enthalpy of reaction at 373 K if `DeltaC_(p)` = zero :-

Last Answer : The enthalpy of a reaction at 273 K. is -3.57 KJ. What will be the enthalpy of reaction at 373 K if `DeltaC_ ... C. `-3.57xx(373)/(273)` D. `-375`

Description : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g)rarr N_(2)(g)+3H_(2)(g)` is :

Last Answer : The enthalpy of formation of ammonia is `-46.0 KJ mol^(-1)` . The enthalpy change for the reaction `2NH_(3)(g) ... mol^(-1)` D. `-92.0 KJ mol^(-1)`

Description : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta S = 66 JK^(-1)mol^(-1)`. The temperature at

Last Answer : For the reaction `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` the value of `Delta H=30.56 KJ mol^(_1)` and `Delta ... :- A. 373 K B. 413 K C. 463 K D. 493 K

Description : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is …….., Given `Delta H=30.5 KJ mol^(-1)` and `Delta S

Last Answer : The temperature at which the reaction : `Ag_(2)O(s)rarr 2Ag(s)+1//2O_(2)(g)` is at equilibrium is .., ... 362.12 K` C. `262.12 K` D. `562.12 K`

Description : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :-

Last Answer : For `CaCO_(3)(s)rarr CaO(s)+CO_(2)(g)` at `977^(@)C, Delta H = 174` KJ/mol , then `Delta E` is :- A. 160 KJ B. 163.6 KJ C. 186.4 KJ D. 180 KJ

Description : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) +3H_(2)O (l)` at `27^(@)C` is `-1366.5 kJ mol^(

Last Answer : The value of enthalpy change `(DeltaH)` for the reaction `C_(2)H_(5)OH (l)+3O_(2) (g) rarr 2CO_(2) (g) + ... 1369. kJ` C. `-1364.0 kJ` D. `-1361.5 kJ`

Description : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 kJ / mol respectively. For the reaction `N_(2)

Last Answer : The enthalpy of formation of `CO(g), CO_(2)(g),N_(2)O(g)` and `N_(2)O_(4)(g)` is `-110,-393,+81` and 10 ... is A. `-212` B. `+212` C. `+778` D. `-778`

Description : If the enthaply change for the transition of liquid water to steam is 30 KJ `"mol"^(-1)` at `27^(@)` C . The entropy change for the process would be

Last Answer : If the enthaply change for the transition of liquid water to steam is 30 KJ `"mol"^(-1)` at `27^(@)` C . The ... K^(-1)` D. `100 J mol^(-1)K^(-1)`

Description : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at `298 K`. What is `Delta U` at `298 K`?

Last Answer : The enthalpy change `(Delta H)` for the reaction `N_(2) (g)+3H_(2)(g) rarr 2NH_(3)(g)` is `-92.38 kJ` at ` ... -87.42 kJ` C. `-97.34 kJ` D. `-89.9 kJ`

Description : `DeltaH_"vaporisation"` (KJ/mol) are given for the hydrides of halogens in the following graph. The hydride HF will correspond to

Last Answer : `DeltaH_"vaporisation"` (KJ/mol) are given for the hydrides of halogens in the following graph. The hydride HF will ... . (B)Q C. (C)R D. (D)S

Description : The value of `Delta_(0) " for " [Ti(H_(2)O)_(6)]^(3+)` is found to be 240 kJ `mol^(-1)` then predict the colour of the complex using the following tab

Last Answer : The value of `Delta_(0) " for " [Ti(H_(2)O)_(6)]^(3+)` is found to be 240 kJ `mol^(-1)` then ... -34)J-sec,N_(A)=6xx10^(23)c=3xx10^(8) m//sec)`

Description : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^(@)=-360` kJ/mol (B) `C_("(gra)")+1/2 O_(2(g)) rarr

Last Answer : Consider the following reactions at `1000^(@)C`. (A) `Zn_((s))+1/2 O_(2(g)) rarr ZnO_((s)), DeltaG^( ... a) and (b) are true D. both (a) and (b) false

Description : Ionization enthalpy of Li is 520 kJ mol^(-1) while that of F is 1681 kJ mol^(-1) . Explain.

Last Answer : Ionization enthalpy of Li is 520 kJ mol-1 while that of F is 1681 kJ mol-1. Explain.

Description : What volume of water can be boiled by 3 kJ of energy?

Last Answer : 1.3 ml(Apex's answer)

Description : How is the h fusion used to calculate the mass of a solid that 1 kj of energy will melt?

Last Answer : What is the answer ?

Description : What is the value for G at 5000 k if H-220 KJmol and S-0.05 KJ (molK)?

Last Answer : 30 kj

Description : What volume of water can be boiled boiled by 3.0 KJ of energy?

Last Answer : 3.0 kJ × 1 mol/40.65 kJ× 18.02 g/mol × 1 mL/1 g= 1.3 mL

Description : What is the value for G at 5000 k if H-220 KJmol and S-0.05 KJ (molK)?

Last Answer : 30 kj

Description : What volume of water can be boiled boiled by 3.0 KJ of energy?

Last Answer : 3.0 kJ × 1 mol/40.65 kJ× 18.02 g/mol × 1 mL/1 g= 1.3 mL

Description : What shows that the formation of CO 2 releases 393.5 kJ mol?

Last Answer : C(s) + O2(g) + CO2(g) + 393.5 kJ

Description : At which temperature would a reaction with AH = -92 kJ/mol, AS = -0.199kJ/(mol·K) be spontaneous?

Last Answer : the answer is 400

Description : If a reaction has an enthalpy of -54.32 kJ/mol and an entropy of -354.2 J/(K*mol), what is the Gibbs free Energy at 54.3(degrees c)?

Last Answer : DeltaG = DeltaH - TDeltaS dG = -54.32 kJ/mol - (54'32+273)K(-354.2J/molK) NB Thevtemperature is quoted in Kelvin(K) and the Entropy must be converted to kJ by dividing by '1000'/ Hence dG = ... 115.94 kJ/mol dG = (+)61.61 kJ/mol Since dG is positive, the reaction is NOT thermodynamically feasible.

Description : A blender has a power of 0.3 kW. It is used to make a fruit smoothie, which takes 50 seconds. How much energy is used Give your answer in kilojoules.kJ?

Last Answer : 15 KJ

Description : How many kilocalories of heat does an expenditure of 551 kJ produce?

Last Answer : Relative to liquids and gasses, they have the least amount of energy. In terms of the actual particles themselves, the amount of energy they possess depends on their structure and composition along with the temperature.

Description : 1 kcal is roughly equal to (A) 4.2 J (B) 42 J (C) 4.2 KJ (D) 42 KJ

Last Answer : Answer : C

Description : Standard free energy (∆G°) of hydrolysis of creatine phosphate is (A) -–51.4 KJ/mol (B) –43.1 KJ/mol (C) –30.5 KJ/mol (D) –15.9 KJ/mol

Last Answer : Answer : B

Description : Standard free energy (∆G°) of hydrolysis of phosphoenolpyruvate is (A) –61.9 KJ/mol (B) –43.1 KJ/mol (C) –14.2 KJ/mol (D) –9.2 KJ/mol

Last Answer : Answer : A

Description : Standard free energy (∆G°) of hydrolysis of ADP to AMP + Pi is (A) –43.3 KJ/mol (B) –30.5 KJ/mol (C) –27.6 KJ/mol (D) –15.9 KJ/mol

Last Answer : Answer : C

Description : Standard free energy (∆G°) of hydrolysis of ATP to ADP + Pi is (A) –49.3 KJ/mol (B) –4.93 KJ/mol (C) –30.5 KJ/mol (D) –20.9 KJ/mol

Last Answer : Answer : C

Description : In S.J. unit, one ton of refrigeration is equal to (a) 210 kJ/min (b) 21 kJ/min (c) 3.5 kJ/min (d) 2.4 kJ/min

Last Answer : Ans: a

Description : An engine produces 10 kW brake power while working with a brake thermal efficiency of 30%. If the calorific value of the fuel used is 40000 kJ/kg, then what is the fuel consumption? (a) 1.5 kg/hour (b) 3 kg/hour (c) 0.3 kg/hour (d) 1 kg/hour

Last Answer : Ans :b

Description : An engine working on air standard Otto cycle has a cylinder diameter of 10 cm and stroke length of 15 cm. The ratio of specific heats for air is 1.4. If the clearance volume is 196.3 cc and the heat supplied per kg of air per ... kg of air is a. 879.1 kJ/ b. 890.2 kJ c. 895.3 kJ d. 973.5 kJ

Last Answer : ANSWER d. 973.5 kJ

Description : The heat value of combustion of Gasoline is - (1) 12600 kJ/kg (2) 14600 kJ/kg (3) 39400 kJ/kg (4) 47000 kJ/kg

Last Answer : (4) 47000 kJ/kg Explanation: The calorific value of Gasoline is 47,300 kJ/kg. The calorific value of a fuel is the quantity of heat produced by its combustion - at constant pressure and under "normal" conditions (i.e. to 0°C and under a pressure of 1,013 mbar).

Description : The ionisation energy of hydrogen atom in the ground state is x KJ. The energy required for an electron to jump from 2nd orbit to 3rd orbit is?

Last Answer : 5x/36

Description : If the specific heats of a gas and a vapor are 0.2KJ/Kg.°K and 1.5 KJ/Kg.°K respectively, and the humidity is 0.01; the humid heat in KJ/°Kg. is (A) 0.31 (B) 0.107 (C) 0.017 (D) 0.215

Last Answer : (D) 0.215

Description : Hot water (0.01 m3 /min) enters the tube side of a counter current shell and tube heat exchanger at 80°C and leaves at 50°C. Cold oil (0.05 m3 /min) of density 800 kg/m3 and specific heat of ... mean temperature difference in °C is approximately (A) 32 (B) 37 (C) 45 (D) 50

Last Answer : (A) 32

Description : It is desired to concentrate a 20% salt solution (20 kg of salt in 100 kg of solution) to a 30% salt solution in an evaporator. Consider a feed of 300 kg/min at 30°C. The boiling point of the solution is 110°C, the latent heat of ... 3.06 10 5 (B) 6.12 10 5 (C) 7.24 10 5 (D) 9.08 10

Last Answer : (A) 3.06 × 10

Description : The reaction A → B is conducted in an adiabatic plug flow reactor (PFR). Pure A at a concentration of 2 kmol/m3 is fed to the reactor at the rate of 0.01 m3 /s and at a temperature of 500 K. If the exit ... /kmole. K (may be assumed to be independent of temperature)) (A) 400 (B) 500 (C) 600 (D) 1000

Last Answer : (C) 600