Heat engine deriving its power from
the energy liberated by the explosion of
a mixture of some hydrocarbon, in a
gaseous or vaporized form.
 a. Dual Combustion Engine
 b. Internal Combustion Engine
 c. External Combustion Engine
 d. None of the above

1 Answer

Answer :

Internal Combustion Engine

Related questions

Description : Which of the following best describes both Stirling and Ericson engines?  a. Internal combustion engine  b. External combustion engine  c. Diesel cycle  d. Rankine cycle

Last Answer : External combustion engine

Description : The efficiency of a dual combustion cycle __________ upon cut-off ratio.  A. depends  B. does not depend

Last Answer : Answer: A

Description : The dual combustion cycle consists of one constant pressure, two constant volume and two isentropic processes.  A. Agree  B. Disagree

Last Answer : Answer: A

Description : What form of energy refers to those a system possesses as a whole with respect to some outside reference frame, such as potential and kinetic energies?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

Last Answer : Macroscopic form of energy

Description : What type of system energy is related to the molecular structure of a system?  A. Macroscopic form of energy  B. Microscopic form of energy  C. Internal energy  D. External energy

Last Answer : Microscopic form of energy

Description : _________ is the energy stored within a body or substance by virtue of the activity and configuration of its molecules.  a. Internal Energy  b. External Energy  c. Kinetic Energy  d. Potential Energy

Last Answer : Internal Energy

Description : What is the amount of heat needed to turn 1kg of the substance at its boiling point from the liquid to the gaseous state?  A. Heat of fusion  B. Heat of vaporation  C. Heat of condensation  D. Heat of fission

Last Answer : Heat of vaporation

Description : The sum of energies of all the molecules in a system, energies that appear in several complex forms.  a. External Energy  b. Internal Energy  c. Kinetic Energy  d. None of the above

Last Answer : Internal Energy

Description : What is defined as the ratio of the net electrical power output to the rate of fuel energy input?  A. Combustion efficiency  B. Thermal efficiency  C. Overall efficiency  D. Furnace efficiency

Last Answer : Overall efficiency

Description : What is the ratio of the useful heat extracted to heating value?  A. Combustion efficiency  B. Phase efficiency  C. Heat efficiency  D. Work efficiency

Last Answer : Combustion efficiency

Description : Otto cycle efficiency is higher than Diesel cycle efficiency for the same compression ratio and heat input because in Otto cycle  A. combustion is at constant volume  B. expansion and compression are isentropic  C. maximum temperature is higher  D. heat rejection is lower

Last Answer : Answer: D

Description : A 0.064 kg of octane vapor (MW = 114) is mixed with0.91 kg of air (MW = 29.0) in the manifold of an Engine. The total pressure in the manifold is 86.1 kPa, and a temperature is 290 K. assume octane behaves ideally. What is ... of the air in the mixture in KPa?  a. 46.8  b. 48.6  c. 84.6  d. 64.8

Last Answer : 84.6

Description : Is a thermodynamic system that operates continuously with only energy (heat and work) crossing its boundaries?  a. Heat Engine  b. Heat Reservoir  c. Heat Source  d. Heat Sink

Last Answer : Heat Engine

Description : Which of the following represents the perpetual motion of the first kind  (a) engine with 100% thermal efficiency  (b) a fully reversible engine  (c) transfer of heat energy from low ... its own energy  (e) production of energy by temperature differential in sea water at different levels.

Last Answer : Answer : d

Description : A gas is compressed in a cylinder by a movable piston to a volume onehalf its original volume. During the process 300 kJ heat left the gas and internal energy remained same. The work done on gas in Nm will be  (a) 300 Nm  (b) 300,000 Nm  (c) 30 Nm  (d) 3000 Nm  (e) 30,000 Nm.

Last Answer : Answer : b

Description : Which of the following occurs in a reversible polytrophic process?  a. Enthalpy remains constant  b. Internal energy does not change  c. Some heat transfer occurs  d. Entropy remains constant

Last Answer : Some heat transfer occurs

Description : What is the highest efficiency of heat engine operating between the two thermal energy reservoirs at temperature limits?  A. Ericson efficiency  B. Otto efficiency  C. Carnot efficiency  D. Stirling efficiency

Last Answer : Carnot efficiency

Description : According to first law of thermodynamics  (a) mass and energy are mutually convertible  (b) Carnot engine is most efficient  (c) heat and work are mutually convertible  (d) mass and light are mutually convertible  (e) heat flows from hot substance to cold substance.

Last Answer : Answer : c

Description : Entropy is the measure of:  a. The internal energy of a gas  b. The heat capacity of a substance  c. Randomness or disorder  d. The change of enthalpy of a system

Last Answer : Randomness or disorder

Description : What is the measure of the energy that is no longer available to perform useful work within the current environment?  a. enthalpy  b. entropy  c. internal energy  d. latent heat

Last Answer : entropy

Description : What is known as the total heat and heat content at various times in the history?  a. enthalpy  b. entropy  c. internal energy  d. latent heat

Last Answer : enthalpy

Description : Sum of the internal energy of a substance and the product of pressure and volume.  a. Specific Heat  b. Specific Gravity  c. Isolated System  d. Enthalpy

Last Answer : Enthalpy

Description : If a system absorbs 500 cal of heat at the same time does 400J of work, find the change in internal energy of the system.  a. 1400 J  b. 1700 J  c. 1900 J  d. 1500 J

Last Answer : 1700 J

Description : When the gas is heated at constant volume, the heat supplied increases the internal energy of the gas.  A.True  B.False

Last Answer : Answer: A

Description : An adiabatic process is one in which  A.no heat enters or leaves the gas  B.the temperature of the gas changes  C.the change in internal energy is equal to the mechanical workdone  D.all of the above

Last Answer : Answer: D

Description : During throttling process  (a) heat exchange does not take place  (b) no work is done by expanding steam  (c) there is no change of internal energy of steam  (d) all of the above  (e) entropy decreases.

Last Answer : Answer : d

Description : If heat be exchanged in a reversible manner, which of the following property of the working substance will change accordingly  (a) temperature  (b) enthalpy  (c) internal energy  (d) entropy  (e) all of the above.

Last Answer : Answer : d

Description : First law of thermodynamics  (a) enables to determine change in internal energy of the system  (b) does not help to predict whether the system will or not undergo a change  (c) does not enable ... entropy  (d) provides relationship between heat, work and internal energy  (e) all of the above.

Last Answer : Answer : e

Description : Total heat of a substance is also known as  (a) internal energy  (b) entropy  (c) thermal capacity  (d) enthalpy  (e) thermal conductance.

Last Answer : Answer : d

Description : Change in internal energy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : c

Description : Change in enthalpy in a closed system is equal to heat transferred if the reversible process takes place at constant  (a) pressure  (b) temperature  (c) volume  (d) internal energy  (e) entropy.

Last Answer : Answer : a

Description : According to first law of thermodynamics  (a) work done by a system is equal to heat transferred by the system  (b) total internal energy of a system during a process remains constant  ( ... , enthalpy and entropy during a process remain constant  (d) total energy of a system remains constant

Last Answer : Answer : d

Description : First law of thermodynamics furnishes the relationship between  (a) heat and work  (b) heat, work and properties of the system  (c) various properties of the system  (d) various thermodynamic processes  (e) heat and internal energy.

Last Answer : (b) heat, work and properties of the system

Description : Addition of heat at constant pressure to a gas results in  (a) raising its temperature  (b) raising its pressure  (c) raising its volume  (d) raising its temperature and doing external work  (e) doing external work.

Last Answer : Answer : d

Description : A 1-kg steam-water mixture at 1.0 MPa is contained in an inflexible tank. Heat is added until the pressure rises to 3.5 MPa and the temperature to 400°. Determine the heat added.  a) 1378.7 kJ  b) 1348.5 kJ  c) 1278,7 kJ  d) 1246,5 kJ Formula: Q = (h2 – p2v2) –(h1 –p1v1)

Last Answer : 1378.7 kJ

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : _________________ is the name given to a gaseous phase that is in contact with the liquid phase, or that is in the vicinity of a state where some of it might be condensed.  a) Vapor  b) Saturated Vapor  c) Superheated Vapor  d) Wet Vapor

Last Answer : Vapor

Description : What refers to the state at which liquid and gaseous phases are indistinguishable?  a. Triple point  b. Critical point  c. Boiling point  d. Pour point

Last Answer : Critical point

Description : What is the unique state at which solid, liquid and gaseous phase can go co-exist in equilibrium?  a. Triple point  b. Critical point  c. Boiling point  d. Pour point

Last Answer : Triple point

Description : How many independent properties are required to completely fix the equilibrium state of a pure gaseous compound?  a. 4  b. 3  c. 2  d. 1

Last Answer : 2

Description : Fuels that may classified conveniently in solid, liquid and gaseous.  a. Unleaded fuel  b. Diesel fuel  c. Fossil fuel  d. All of the above

Last Answer : Fossil fuel

Description : How many independent properties are required to completely fix the equilibrium state of a pure gaseous compound?  A. 4  B. 3  C. 2  D. 1

Last Answer : 2

Description : It is used for gas turbines which operates on an open cycle where both the compression and expansion processes take place in rotating machinery.  a. Dual Cycle  b. Otto Cycle  c. Carnot Cycle  d. Brayton Cycle

Last Answer : Brayton Cycle

Description : Reversed joule cycle is called  (a) Carnot cycle  (b) Rankine cycle  (c) Brayton cycle  (d) Bell Coleman cycle  (e) Dual cycle.

Last Answer : Answer : c

Description : Which of the following thermodynamic devices operates the reverse of the heat engine?  a. Thermal pump  b. Thermal evaporator  c. Thermal condenser  d. Thermal equilibrant

Last Answer : Thermal pump

Description : Amount of heat needed to rate the temperature of a substance by 1°C  a. Heat Exchange  b. Heat Engine  c. Specific Heat  d. None of the above

Last Answer : Specific Heat

Description : For heat engine operating between two temperatures (T1>T2), what is the maximum efficiency attainable?  A. Eff = 1 – (T2/T1)  B. Eff = 1 - (T1/T2)  C. Eff = T1 - T2  D. Eff = 1 - (T2/T1)^2

Last Answer : Eff = 1 – (T2/T1)