Joule-Thomson co-efficient is the ratio of
(A) Pressure change to temperature change occuring during adiabatic compression of a gas
(B) Pressure change to temperature change occuring during adiabatic throttling of a gas
(C) Temperature change to pressure change occuring during adiabatic compression of a gas
(D) Temperature change to pressure change occuring during adiabatic throttling of a gas

1 Answer

Answer :

(D) Temperature change to pressure change occuring during adiabatic throttling of a gas

Related questions

Description : Which one is true for a throttling process? (A) A gas may have more than one inversion temperatures (B) The inversion temperature is different for different gases (C) The inversion ... gases (D) The inversion temperature is the temperature at which Joule-Thomson co-efficient is infinity

Last Answer : (B) The inversion temperature is different for different gases

Description : Claude process of gas liquefaction employs (A) Merely compression of gas beyond its critical pressure (B) Joule-Thomson expansion cooling (C) Heat exchange with colder stream (D) Adiabatic expansion against a piston or in a turbine

Last Answer : (D) Adiabatic expansion against a piston or in a turbine

Description : In thermodynamics, a throttling process, also called a _________, is a type of isenthalpic process where a liquid or gas is cooled as it passes from a higher pressure state to a lower pressure state.  a. Rankine Process  b. Carnot Cycle  c. Joule-Thomson process  d. Refrigeration process

Last Answer : Joule-Thomson process

Description : Joule-Thomson co-efficient depends on the (A) Pressure (B) Temperature (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : Throttling (Joule-Thomson effect) process is a constant __________ process. (A) Enthalpy (B) Entropy (C) Pressure (D) None of these

Last Answer : (A) Enthalpy

Description : Joule-Thomson effect i.e., a throttling process is a constant __________ process. (A) Entropy (B) Temperature (C) Internal energy (D) Enthalpy

Last Answer : (D) Enthalpy

Description : Linde process of gas liquefaction employs (A) Exchange of heat with colder stream (B) Adiabatic expansion through a throttle valve (Joule-Thomson expansion) (C) Adiabatic expansion against a piston or in a turbine (D) Merely compressing the gas beyond its critical pressure

Last Answer : (B) Adiabatic expansion through a throttle valve (Joule-Thomson expansion)

Description : (1/V) (∂V/∂T)Pis the mathematical expression (A) Joule-Thomson co-efficient (B) Specific heat at constant pressure (Cp) (C) co-efficient of thermal expansion (D) Specific heat at constant volume (CV)

Last Answer : (C) co-efficient of thermal expansion

Description : Joule-Thomson co-efficient for a perfect gas is (A) Zero (B) Positive (C) Negative (D) None of these

Last Answer : (A) Zero

Description : What is the value of Joule-Thomson co-efficient for an ideal gas? (A) +ve (B) -ve (C) 0 (D) ∞

Last Answer : (C) 0

Description : Joule-Thomson co-efficient which is defined as, η = (∂T/∂P)H = 1/Cp (∂H/∂T)P, changes sign at a temperature known as inversion temperature. The value of Joule-Thomson co-efficient at inversion temperature is (A) 0 (B) ∞ (C) +ve (D) -ve

Last Answer : (A) 0

Description : 6. Liquefaction of gases cannot be done by (A) Exchange of heat with colder stream (B) Adiabatic expansion through a throttle valve (Joule-Thomson expansion) (C) Merely compressing it beyond critical pressure (D) Adiabatic expansion against a piston or in a turbine

Last Answer : (C) Merely compressing it beyond critical pressure

Description : What is defined as the ratio of the change in temperature to the change in pressure when a real gas is throttled?  A. Rankine coefficient  B. Kelvin coefficient  C. Maxwell-Boltzmann coefficient  D. Joule-Thomson coefficient

Last Answer : Joule-Thomson coefficient

Description : The Joule-Thomson co-efficient is defined as (∂T/∂P)H. Its value at the inversion point is (A) ∞ (B) 1 (C) 0 (D) -ve

Last Answer : (C) 0

Description : Joule-Thomson Co-efficient at any point on the inversion curve is (A) ∞ (B) +ve (C) 0 (D) -ve

Last Answer : (C) 0

Description : Joule-Thomson co-efficient is defined as (A) µ = (∂P/∂T)H (B) µ = (∂T/∂P)H (C) µ = (∂E/∂T)H (D) µ = (∂E/∂P)H

Last Answer : (B) µ = (∂T/∂P)H

Description : The principle applied in liquefaction of gases is (A) Adiabatic expansion (B) Joule-Thomson effect (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) and (B)

Description : Joule-Thomson experiment is (A) Isobaric (B) Adiabatic (C) Isenthalpic (D) Both (B) & (C)

Last Answer : (D) Both (B) & (C)

Description : When a gas is expanded from high pressure region to low pressure region; temperature change occurs". This phenomenon is related to the (A) Gibbs-Duhem equation (B) Gibbs-Helmholtz equation (C) Third law of thermodynamics (D) Joule-Thomson effect

Last Answer : (D) Joule-Thomson effect

Description : __________ decreases during adiabatic throttling of a perfect gas. (A) Entropy (B) Temperature (C) Enthalpy (D) Pressure

Last Answer : (D) Pressure

Description : The adiabatic throttling process of a perfect gas is one of constant enthalpy (A) In which there is a temperature drop (B) Which is exemplified by a non-steady flow expansion (C) Which can be performed in a pipe with a constriction (D) In which there is an increase in temperature

Last Answer : (C) Which can be performed in a pipe with a constriction

Description : During Joule-Thomson expansion of gases (A) Enthalpy remains constant (B) Entropy remains constant (C) Temperature remains constant (D) None of these

Last Answer : (A) Enthalpy remains constant

Description : An adiabatic process in which there is no change in system enthalpy but for which there is a significant decrease in pressure is called _____.  A. Isochoric process  B. Isobaric process  C. Throttling process  D. Quasistatic process

Last Answer : Throttling process

Description : Gases are cooled in Joule-Thomson expansion, when it is __________ inversion temperature. (A) Below (B) At (C) Above (D) Either 'b' or 'c'

Last Answer : A) Below

Description : In Joule-Thomson porous plug experiment, the (A) Enthalpy does not remain constant (B) Entire apparatus is exposed to surroundings (C) Temperature remains constant (D) None of these

Last Answer : (D) None of these

Description : Air enters an adiabatic compressor at 300K. The exit temperature for a compression ratio of 3, assuming air to be an ideal gas (Y = Cp/Cv = 7/5) and the process to be reversible, is (A) 300 × (32/7) (B) 300 × (33/5) (C) 300 × (333/7) (D) 300 × (35/7)

Last Answer : A) 300 × (32/7)

Description : (∂T/∂P)H is the mathematical expression for (A) Specific heat at constant pressure (Cp) (B) Specific heat at constant volume (Cv) (C) Joule-Thompson co-efficient (D) None of these

Last Answer : (C) Joule-Thompson co-efficient

Description : In case of an ideal gas, Joule Thomson coefficient is -

Last Answer : In case of an ideal gas, Joule Thomson coefficient is - A. Zero B. Positive C. Negative D. Infinite

Description : The Joule. Thomson expansion of a gas is an

Last Answer : The Joule. Thomson expansion of a gas is an A. Isothermal process B. Isochoric process C. Isoenthalpic process D. Isobaric process

Description : Which of the following processes are thermodynamically reversible  (a) throttling  (b) free expansion  (c) constant volume and constant pressure  (d) hyperbolic and pV = C  (e) isothermal and adiabatic.

Last Answer : Answer : e

Description : A heat exchange process in which the product of pressure and volume remains constant is known as  (a) heat exchange process  (b) throttling process  (c) isentropic process  (d) adiabatic process  (e) hyperbolic process.

Last Answer : Answer : e

Description : If a gas vapour is allowed to expand through a very minute aperture, then such a process is known as  (a) free expansion  (b) hyperbolic expansion  (c) adiabatic expansion  (d) parabolic expansion  (e) throttling.

Last Answer : Answer : e

Description : The expression, nCv(T2- T1), is for the __________ of an ideal gas. (A) Work done under adiabatic condition (B) Co-efficient of thermal expansion (C) Compressibility (D) None of these

Last Answer : (A) Work done under adiabatic condition

Description : The expression, nRT ln(P1/P2), is for the __________of an ideal gas. (A) Compressibility (B) Work done under adiabatic condition (C) Work done under isothermal condition (D) Co-efficient of thermal expansion

Last Answer : C) Work done under isothermal condition

Description : During adiabatic compression of a gas, what is the its temperature?

Last Answer : Rises

Description : The processes occuring in open system which permit the transfer of mass to and from the system, are known as  A.flow processes  B.non-flow processes  C.adiabatic processes  D.none of these

Last Answer : Answer: A

Description : Which of the following engines is the most efficient?  a. Isobaric expansion  b. Adiabatic compression  c. Adiabatic expansion  d. Isothermal expansion

Last Answer : Isobaric expansion

Description : What happens in a reversible adiabatic compression? (A) Heating occurs (B) Cooling occurs (C) Pressure is constant (D) Temperature is constant

Last Answer : A) Heating occurs

Description : Which of the following processes is irreversible process  (a) isothermal  (b) adiabatic  (c) throttling  (d) all of the above  (e) none of the above.

Last Answer : Answer : c

Description : If a fluid expands suddenly into vacuum through an orifice of large dimension, then such a process is called  (a) free expansion  (b) hyperbolic expansion  (c) adiabatic expansion  (d) parabolic expansion  (e) throttling.

Last Answer : Answer : a

Description : Free energy, fugacity and activity co-efficient are all affected by change in the temperature. The fugacity co-efficient of a gas at constant pressure ____with the increase of reduced temperature. (A) Decreases (B) Increases (C) Remains constant

Last Answer : (B) Increases

Description : Which of the following reactions occuring during coal gasification is called the Neumann reversal reaction? (A) 2CO ↔ C + CO2 (B) CO + H2O ↔ CO2 + H2 (C) C + H2O ↔ CO + H2 (D) C + 2H2O ↔ CO2 + 2H2

Last Answer : (A) 2CO ↔ C + CO2

Description : For the case of a fuel gas undergoing combustion with air, if the air/fuel ratio is increased, the adiabatic flame temperature will (A) Increase (B) Decrease (C) Increase or decrease depending on the fuel type (D) Not change

Last Answer : (B) Decrease

Description : All gases except __________ shows a cooling effect during throttling process at atmospheric temperature and pressure. (A) Oxygen (B) Nitrogen (C) Air (D) Hydrogen

Last Answer : (D) Hydrogen

Description : Adiabatic compression is one in which A. Temperature during compression remains constant B. No heat leaves or enters the compressor cylinder during compression C. Temperature rise follows a linear relationship D. Work done is maximum.

Last Answer : ANSWER : B

Description : A process, in which the temperature of the working substance remains constant during its expansion or compression, is called  A. isothermal process  B. hyperbolic process  C. adiabatic process  D. polytropic process

Last Answer : Answer: A

Description : Air standard Otto cycle is more efficient than the diesel cycle for the same (A) Heat addition & compression ratio (B) Heat addition & pressure (C) Compression ratio & pressure (D) Cylinder dimension & rpm

Last Answer : (A) Heat addition & compression ratio

Description : The thermodynamic law, PVy = constant, is not applicable in case of (A) Ideal compression of air (B) Free expansion of an ideal gas (C) Adiabatic expansion of steam in a turbine (D) Adiabatic compression of a perfect gas

Last Answer : (B) Free expansion of an ideal gas

Description : The thermodynamic law, PVy = constant, is not followed by the (A) Free expansion of an ideal gas (B) Adiabatic expansion of steam in turbine (C) Adiabatic compression of air (D) Ideal compression of air

Last Answer : Option A

Description : In case of an __________ process, the temperature of the system increases. (A) Isothermal compression (B) Isothermal expansion (C) Adiabatic expansion (D) Adiabatic compression

Last Answer : (D) Adiabatic compression