Joule-Thomson Co-efficient at any point on the inversion curve is (A) ∞
(B) +ve
(C) 0
(D) -ve

1 Answer

Answer :

(C) 0

Related questions

Description : The Joule-Thomson co-efficient is defined as (∂T/∂P)H. Its value at the inversion point is (A) ∞ (B) 1 (C) 0 (D) -ve

Last Answer : (C) 0

Description : Joule-Thomson co-efficient which is defined as, η = (∂T/∂P)H = 1/Cp (∂H/∂T)P, changes sign at a temperature known as inversion temperature. The value of Joule-Thomson co-efficient at inversion temperature is (A) 0 (B) ∞ (C) +ve (D) -ve

Last Answer : (A) 0

Description : What is the value of Joule-Thomson co-efficient for an ideal gas? (A) +ve (B) -ve (C) 0 (D) ∞

Last Answer : (C) 0

Description : Which one is true for a throttling process? (A) A gas may have more than one inversion temperatures (B) The inversion temperature is different for different gases (C) The inversion ... gases (D) The inversion temperature is the temperature at which Joule-Thomson co-efficient is infinity

Last Answer : (B) The inversion temperature is different for different gases

Description : Gases are cooled in Joule-Thomson expansion, when it is __________ inversion temperature. (A) Below (B) At (C) Above (D) Either 'b' or 'c'

Last Answer : A) Below

Description : Joule-Thomson co-efficient for a perfect gas is (A) Zero (B) Positive (C) Negative (D) None of these

Last Answer : (A) Zero

Description : (1/V) (∂V/∂T)Pis the mathematical expression (A) Joule-Thomson co-efficient (B) Specific heat at constant pressure (Cp) (C) co-efficient of thermal expansion (D) Specific heat at constant volume (CV)

Last Answer : (C) co-efficient of thermal expansion

Description : Joule-Thomson co-efficient depends on the (A) Pressure (B) Temperature (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : Joule-Thomson co-efficient is defined as (A) µ = (∂P/∂T)H (B) µ = (∂T/∂P)H (C) µ = (∂E/∂T)H (D) µ = (∂E/∂P)H

Last Answer : (B) µ = (∂T/∂P)H

Description : Joule-Thomson co-efficient is the ratio of (A) Pressure change to temperature change occuring during adiabatic compression of a gas (B) Pressure change to temperature change occuring during adiabatic ... a gas (D) Temperature change to pressure change occuring during adiabatic throttling of a gas

Last Answer : (D) Temperature change to pressure change occuring during adiabatic throttling of a gas

Description : The slope of the operating line for a single component co-current absorber when plotted in terms of mole ratio units is (A) 0 (B) ∞ (C) -ve (D) +ve

Last Answer : (C) -ve

Description : The difference between isothermal compressibility and adiabatic compressibility for an ideal gas is (A) 0 (B) +ve (C) -ve (D) ∞

Last Answer : (B) +ve

Description : The specific heat of saturated water vapour at 100°C is (A) ∞ (B) -ve (C) 0 (D) +ve

Last Answer : B) -ve

Description : Gibbs free energy of mixing at constant pressure and temperature is always (A) 0 (B) ∞ (C) + ve (D) - ve

Last Answer : (D) - ve

Description : Compressibility co-efficient for an absolutely compressible cake is (A) 0 (B) 1 (C) 0 to 1 (D) ∞

Last Answer : (B) 1

Description : 6. Liquefaction of gases cannot be done by (A) Exchange of heat with colder stream (B) Adiabatic expansion through a throttle valve (Joule-Thomson expansion) (C) Merely compressing it beyond critical pressure (D) Adiabatic expansion against a piston or in a turbine

Last Answer : (C) Merely compressing it beyond critical pressure

Description : Claude process of gas liquefaction employs (A) Merely compression of gas beyond its critical pressure (B) Joule-Thomson expansion cooling (C) Heat exchange with colder stream (D) Adiabatic expansion against a piston or in a turbine

Last Answer : (D) Adiabatic expansion against a piston or in a turbine

Description : Linde process of gas liquefaction employs (A) Exchange of heat with colder stream (B) Adiabatic expansion through a throttle valve (Joule-Thomson expansion) (C) Adiabatic expansion against a piston or in a turbine (D) Merely compressing the gas beyond its critical pressure

Last Answer : (B) Adiabatic expansion through a throttle valve (Joule-Thomson expansion)

Description : When a gas is expanded from high pressure region to low pressure region; temperature change occurs". This phenomenon is related to the (A) Gibbs-Duhem equation (B) Gibbs-Helmholtz equation (C) Third law of thermodynamics (D) Joule-Thomson effect

Last Answer : (D) Joule-Thomson effect

Description : Throttling (Joule-Thomson effect) process is a constant __________ process. (A) Enthalpy (B) Entropy (C) Pressure (D) None of these

Last Answer : (A) Enthalpy

Description : The principle applied in liquefaction of gases is (A) Adiabatic expansion (B) Joule-Thomson effect (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) and (B)

Description : Joule-Thomson experiment is (A) Isobaric (B) Adiabatic (C) Isenthalpic (D) Both (B) & (C)

Last Answer : (D) Both (B) & (C)

Description : During Joule-Thomson expansion of gases (A) Enthalpy remains constant (B) Entropy remains constant (C) Temperature remains constant (D) None of these

Last Answer : (A) Enthalpy remains constant

Description : Joule-Thomson effect i.e., a throttling process is a constant __________ process. (A) Entropy (B) Temperature (C) Internal energy (D) Enthalpy

Last Answer : (D) Enthalpy

Description : In Joule-Thomson porous plug experiment, the (A) Enthalpy does not remain constant (B) Entire apparatus is exposed to surroundings (C) Temperature remains constant (D) None of these

Last Answer : (D) None of these

Description : The effectiveness factor for large value of Thiele modulus [L√(K/D1 )] of a solid catalysed first order reaction is equal to (where, L = length of the reactor, cm, D1 = diffusion co-efficient, cm2 /second). (A) L √(K/D1 ) (B) 1/[L√(K/D1 )] (C) 1 (D) ∞

Last Answer : (B) 1/[L√(K/D1 )]

Description : (∂T/∂P)H is the mathematical expression for (A) Specific heat at constant pressure (Cp) (B) Specific heat at constant volume (Cv) (C) Joule-Thompson co-efficient (D) None of these

Last Answer : (C) Joule-Thompson co-efficient

Description : In case of an ideal gas, Joule Thomson coefficient is -

Last Answer : In case of an ideal gas, Joule Thomson coefficient is - A. Zero B. Positive C. Negative D. Infinite

Description : The Joule. Thomson expansion of a gas is an

Last Answer : The Joule. Thomson expansion of a gas is an A. Isothermal process B. Isochoric process C. Isoenthalpic process D. Isobaric process

Description : In thermodynamics, a throttling process, also called a _________, is a type of isenthalpic process where a liquid or gas is cooled as it passes from a higher pressure state to a lower pressure state.  a. Rankine Process  b. Carnot Cycle  c. Joule-Thomson process  d. Refrigeration process

Last Answer : Joule-Thomson process

Description : What is defined as the ratio of the change in temperature to the change in pressure when a real gas is throttled?  A. Rankine coefficient  B. Kelvin coefficient  C. Maxwell-Boltzmann coefficient  D. Joule-Thomson coefficient

Last Answer : Joule-Thomson coefficient

Description : Linear stress strain curve is for a (a) Load ∞ displacement (b) Load ∞ ( 1/displacement) (c) Load = ( displacement)2 (d) None

Last Answer : (a) Load ∞ displacement

Description : At the boiling point of the liquid at the prevailing pressure, the saturated absolute humidity becomes (A) 1 (B) 0 (C) ∞ (D) None of these

Last Answer : (C) ∞

Description : The temperature at which ferromagnetic material can no longer be magnetised by the outside forces, is termed as the (A) Critical point (B) Curie temperature (C) Inversion temperature (D) Eutectic temperature

Last Answer : (B) Curie temperature

Description : Find the magnetic field when a circular conductor of very high radius is subjected to a current of 12A and the point P is at the centre of the conductor. a) 1 b) ∞ c) 0 d) -∞

Last Answer : c) 0

Description : Find the potential due the dipole when the angle subtended by the two charges at the point P is perpendicular. a) 0 b) Unity c) ∞ d) -∞

Last Answer : a) 0

Description : The driving point impedance with poles at ω = 0(zero) and ω = ∞ (infinity) must have the  (a) s term in the denominator and an excess term in the numerator (b) s term in the ... the numerator and denominator (d) s term in the denominator and equal number of terms in the numerator and denominator

Last Answer : The driving point impedance with poles at ω = 0(zero) and ω = ∞ (infinity) must have the s term in the denominator and an excess term in the numerator

Description : . A dilute aqueous solution is to be concentrated in an evaporator system. High pressure steam is available. Multiple effect evaporator system is employed, because (A) Total heat transfer area of ... in a single effect is much lower than that in any effect in a multi-effect system

Last Answer : (B) Total amount of vapor produced per Kg of feed steam in a multiple effect system is much higher than in a single effect

Description : Sudden temperature fluctuation does not affect pyrex glass, because of its (A) Low co-efficient of expansion (B) High co-efficient of expansion (C) High melting point (D) Both (B) and (C)

Last Answer : (A) Low co-efficient of expansion

Description : At normal boiling point, molar entropy of vaporisation is __________ Joule/K°.mole. (A) 72 (B) 92 (C) 142 (D) 192

Last Answer : (B) 92

Description : Cetane number of alpha methyl naphthalene is assumed to be (A) 0 (B) 100 (C) 50 (D) ∞

Last Answer : (A) 0

Description : Octane number of n-heptane is assumed to be (A) 100 (B) 0 (C) 70 (D) ∞

Last Answer : (B) 0

Description : What is the selectivity index, if the grade of tailings & concentrate is the same? (A) 0 (B) ∞ (C) 1 (D) 0.5

Last Answer : (C) 1

Description : At what value of reflux ratio, number of theoretical plates in a distillation column is minimum? (A) 0 (B) 1 (C) ∞ (D) < 1

Last Answer : (C) ∞

Description : The value of NA/(NA + NB), for steady state equimolal counter diffusion of two gases 'A' and 'B' is (A) 1 (B) ∞ (C) 0.5

Last Answer : (B) ∞

Description : The value of NA/(NA + NB) for steady state molecular diffusion of gas 'A' through non-diffusing gas 'B' is (A) 1 (B) ∞ (C) 0.5 (D) 2

Last Answer : (A) 1

Description : The relative volatility of a binary mixture at the Azeotropic composition is (A) 1 (B) > 1 (C) 0 (D) ∞

Last Answer : (D) ∞

Description : In a 1-1 concurrent heat exchanger, if the tube side fluid outlet temperature is equal to the shell side fluid outlet temperature, then the LMTD is (A) ∞ (B) 0 ... temperature (D) Equal to the difference between hot fluid inlet temperature and cold fluid outlet temperature

Last Answer : (B) 0

Description : What is the thermal conductivity of a perfect heat insulator? (A) Zero (B) One (C) ∞ (D) Between 0 and ∞

Last Answer : (A) Zero

Description : Absorptivity and reflectivity of a perfect black body are respectively (A) 1 and 0 (B) 0 and 1 (C) 1 and ∞ (D) 0 and 0.5

Last Answer : (A) 1 and 0