Overall heat transfer co-efficient of a particular tube is U1
. If the same
tube with some dirt deposited on either side has coefficient U2
, then
(A) U1 = U2
(B) U2 > U1
(C) U1 > U2
(D) U1 = dirt factor - U2

1 Answer

Answer :

(A) U1 = U2

Related questions

Description : Fouling factor for a heat exchanger is given by (where, U1 = heat transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean surface). (A) U1 - U2 (B) 1/U1 - 1/U2 (C) 1/U2 - 1/U1 (D) U2 - U1

Last Answer : (B) 1/U1 - 1/U2

Description : The overall heat transfer co-efficient for a shell and tube heat exchangerfor clean surfaces is U0 = 400 W/m2 .K. The fouling factor after one year of operation is found to be hd0 = 2000 W/m2 .K. The overall heat transfer co￾efficient ... 1200 W/m2 .K (B) 894 W/m2 .K (C) 333 W/m2 .K (D) 287 W/m2 .K

Last Answer : (C) 333 W/m2 .K

Description : For the same heat load and mass flow rate in the tube side of a shell and tube heat exchanger, one may use multipass on the tube side, because it (A) Decreases the pressure drop (B) ... the outlet temperature of cooling medium (C) Increases the overall heat transfer coefficient (D) None of these

Last Answer : (C) Increases the overall heat transfer coefficient

Description : In case of vertical tube evaporator, with increase in liquor level, the overall heat transfer co-efficient (A) Increases (B) Decreases (C) Is not affected (D) May increase or decrease; depends on the feed

Last Answer : (B) Decreases

Description : The thermal efficiency of a reversible heat engine operating between two given thermal reservoirs is 0.4. The device is used either as a refrigerator or as a heat pump between the same reservoirs. Then the coefficient of performance as a ... )R = 1.5; (COP)HP = 2.5 (D) (COP)R = (COP)HP = 2.5

Last Answer : (C) (COP)R = 1.5; (COP)HP = 2.5

Description : For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus-Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of (A) 1 (B) 1.74 (C) 6.1 (D) 37

Last Answer : (C) 6.1

Description : . In a shell and tube heat exchanger, the tube side heat transfer co￾efficient just at the entrance of the tube is (A) Infinity (B) Zero (C) Same as average heat transfer co-efficient for tube side (D) None of these

Last Answer : (A) Infinity

Description : Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient ... ) Horizontal heat exchanger with steam on tube side (D) Horizontal heat exchanger with steam on shell side

Last Answer : (B) Vertical heat exchanger with steam on shell side

Description : If h1 = inner film co-efficient and /h2 = outer film co-efficient, then the overall heat transfer co-efficient is (A) Always less than h1 (B) Always between h1 and h2 (C) Always higher than h2 (D) Dependent on metal resistance

Last Answer : (B) Always between h1 and h2

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : Baffles in the shell side of a shell and tube heat exchanger (A) Increase the cross-section of the shell side liquid (B) Force the liquid to flow parallel to the bank (C) Increase the shell side heat transfer co-efficient (D) Decrease the shell side heat transfer co-efficient

Last Answer : (C) Increase the shell side heat transfer co-efficient

Description : The inside heat transfer co-efficient in case of turbulent flow of liquid in the tube side in a 1-2 shell and tube heat exchanger is increased by __________ times, when the number of tube passes is increased to 8. (A) 2 0.8 (B) 4 0.8 (C) 4 0.4 (D) 2 0.4

Last Answer : (B) 4 0.8

Description : Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger? (A) Tube side pressure drop and the heat transfer rate (B) Convective heat transfer co-efficient (C) Effective tube surface area for convective heat transfer (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : The advantage of using a 1 - 2 shell and tube heat exchanger over a 1 - 1 shell and tube heat exchanger is (A) Lower tube side pressure drop (B) Lower shell side pressure drop (C) Higher tube side heat transfer co-efficient (D) Higher shell side heat transfer co-efficient

Last Answer : (C) Higher tube side heat transfer co-efficient

Description : Extremely large or small volumes of fluids are generally best routed through the shell side of a shell and tube heat exchanger, because of the (A) Less corrosion problems (B) Flexibility possible in the baffle arrangement (C) Low pressure drop (D) High heat transfer co-efficient

Last Answer : (B) Flexibility possible in the baffle arrangement

Description : Pick out the wrong statement. (A) 'Solvates' are chemical compounds formed by solute with their solvents. When water is the solvent, then it is called a 'hydrate' (B) In heat exchanger ... vertical evaporators, area of central downtake is about 50 to 100% of the total tube cross-sectional area

Last Answer : (C) Heat transfer co-efficient during nucleate boiling is not influenced by the agitation imparted

Description : Pick out the wrong statement. (A) The condensing film co-efficient is about 3 times lower for vertical condenser as compared to the equivalent horizontal condenser for identical situation ( ... in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Last Answer : (D) Overall heat transfer co-efficient in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Description : Double pipe heat exchangers are preferably useful, when (A) High viscosity liquid is to be cooled (B) Requirement of heat transfer area is low (C) Overall heat transfer co-efficient is very high (D) A corrosive liquid is to be heated

Last Answer : (B) Requirement of heat transfer area is low

Description : Overall heat transfer co-efficient for cooling of hydrocarbons by water is about (A) 50 -100 Kcal/hr.m2 .°C (B) 50 -100 W/m2 .°K (C) 50 -100 BTU/hr. ft. 2°F (D) 1000 - 1500 BTU/hr. ft. 2°F

Last Answer : (C) 50 -100 BTU/hr. ft. 2°F

Description : Which of the following has the lowest overall heat transfer co-efficient? (A) Dowtherm (B) Molten sodium (C) Water (D) Air

Last Answer : (D) Air

Description : Out of the following four assumptions used in the derivation of theequation for LMTD [LMTD = (∆t1 - ∆t2 )/ln(∆t1 /∆t2 )], which one is subject to the largest deviation in practice ? (A) Constant ... (B) Constant rate of fluid flow (C) Constant specific heat (D) No partial phase change in the system

Last Answer : (B) Constant rate of fluid flow

Description : In an extended surface heat exchanger, fluid having lower co-efficient (A) Flows through the tube (B) Flows outside the tubes (C) Can flow either inside or outside the tubes (D) Should not be used as it gives very high pressure drop

Last Answer : (B) Flows outside the tubes

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : Multipass heat exchangers are used (A) Because of simplicity of fabrication (B) For low heat load (C) To obtain higher heat transfer co-efficient and shorter tube (D) To reduce the pressure drop

Last Answer : (C) To obtain higher heat transfer co-efficient and shorter tube

Description : In a shell and tube heat exchanger, floating head is used for (A) Large temperature differentials (B) High heat transfer co-efficient (C) Low pressure drop (D) Less corrosion of tubes

Last Answer : (A) Large temperature differentials

Description : For a laminar flow of fluid in a circular tube, 'h1 ' is the convective heat transfer co-efficient at velocity 'V1 '. If the velocity is reduced by half and assuming the fluid properties are constant, the new convective heat transfer co-efficient is (A) 1.26 h1 (B) 0.794 h1 (C) 0.574 h1 (D) 1.741 h1

Last Answer : (B) 0.794 h1

Description : H2S is being absorbed in a gas absorber unit. The height of the transfer unit based on the overall mass transfer coefficient on the gas side is 0.4 m. The equilibrium data is given by, y = 1.5 x. The bulk concentration of H2S ... by, y = 5x + 0.001 is (A) 2.0 (B) 1.56 (C) 1.0

Last Answer : (A) 2.0

Description : The wetted wall tower is used to determine (A) Individual mass transfer co-efficient (M.T.C.) in gaseous system (B) M.T.C. of individual components in a liquid-liquid system (C) M.T.C. of liquid in liquid-gas system (D) The overall M.T.C. of the system

Last Answer : (A) Individual mass transfer co-efficient (M.T.C.) in gaseous system

Description : The overall mass transfer co-efficient for the absorption of SO2 in air with dilute NaOH solution can be increased substantially by (A) Increasing the gas film co-efficient (B) Increasing the liquid film co-efficient (C) Increasing the total pressure (D) Decreasing the total pressure

Last Answer : (A) Increasing the gas film co-efficient

Description : In a vapor-liquid contacting equipment, the overall gas phase mass transfer co-efficient (M.T.C), KG is related to individual co-efficients (KG and KL ) as (A) KG = 1/KG + m/KL (B) 1/KG = 1/KG + m/KL (C) 1/KG = 1/KL + m/KG (D) KG = 1/KL + m/KG

Last Answer : (B) 1/KG = 1/KG + m/KL

Description : Mass transfer co-efficient is defined as (A) Flux = Co-efficient/concentration difference (B) Co-efficient = Flux/concentration difference (C) Flux=concentration difference/coefficient (D) None of these

Last Answer : (B) Co-efficient = Flux/concentration difference

Description : For a heat exchanger, will the overall heat transfer coefficient increase along with an increase in LMTD (log mean temperature difference) around the unit?

Last Answer : The overall heat transfer coefficient is generally weakly dependent on temperature. As the temperatures of the fluids change, the degree to which the overall heat transfer coefficient will be affected depends ... with temperature as I've noted and the U-value will decrease over time with fouling).

Description : Baffles are provided in heat exchangers to increase the (A) Fouling factor (B) Heat transfer area (C) Heat transfer co-efficient (D) Heat transfer rate

Last Answer : (C) Heat transfer co-efficient

Description : Steam side heat transfer co-efficient in an evaporator is in the range of __________ kcal/hr.m2°C. (A) 10-50 (B) 100-500 (C) 1000-1500 (D) 5000-15000

Last Answer : (D) 5000-15000

Description : A thin, flat & square plate measuring 2 m 2 m is freely hanging in ambient air at 25°C. It is exposed to the solar radiation falling on one side of the plate at the rate of 500 W/m2. The plate temperature will ... heat transfer co-efficient is __________ W/m2 °C. (A) 50 (B) 100 (C) 150 (D) 200

Last Answer : (B) 100

Description : For absorbing a sparingly soluble gas in a liquid, the (A) Gas side co-efficient should be increased (B) Liquid side coefficient should be increased (C) Gas side co-efficient should be decreased (D) Liquid side co-efficient should be decreased

Last Answer : (B) Liquid side coefficient should be increased

Description : Give the unit of overall heat transfer coefficient in SI and MKS.

Last Answer : Unit of overall heat transfer coefficient 1. In SI : W/m2K 2. In MKS : kcal/hr m2K

Description : In a co-current double pipe heat exchanger used for condensing saturated steam over the inner tube, if the entrance and exit conditions of the coolant are interchanged, then the rate of condensation ... Decrease (C) Remain unchanged (D) Either increase or decrease; depends on the coolant flow rate

Last Answer : (C) Remain unchanged

Description : The heat transfer co-efficient in film type condensation is __________ that for dropwise condensation. (A) Greater than (B) Lower than (C) Is same as (D) Half

Last Answer : (B) Lower than

Description : Condensing film co-efficient for steam on horizontal tubes ranges from 5000 to 15000 Kcal/hr.m2 .°C. Condensation of vapor is carried out inside the tube in a shell and tube heat ... drop through the exchanger is desired (D) Temperature of the incoming vapor is very high

Last Answer : (B) Supersaturated

Description : Pick out the wrong statement. (A) The Reynolds analogy for mass transfer is given by Lewis relation and is applicable, when Schmidt number is one (B) Sherwood number for flow in pipes can be expressed ... flux of a component A in binary mixture of A and B is given by - Dab'.dCA/dz

Last Answer : (C) According to film theory for equimolar counter diffusion, the mass transfer coefficient is given by DAB(B)P - 3, Q - 2

Description : For absorbing a sparingly soluble gas in a liquid (A) Gas side mass transfer co-efficient should be increased (B) Liquid side mass transfer co-efficient should be increased (C) Liquid side mass transfer co-efficient should be decreased (D) Mass transfer co-efficient must be kept constant

Last Answer : (B) Liquid side mass transfer co-efficient should be increased

Description : An ideal coolant for a nuclear reactor should (A) Be a good absorber of neutrons (B) Be capable of attaining high temperature, only when it is pressurised (C) Have high density, but low heat transfer co-efficient (D) Be free from radiation damage and non-corrosive

Last Answer : (D) Be free from radiation damage and non-corrosive

Description : . A dilute aqueous solution is to be concentrated in an evaporator system. High pressure steam is available. Multiple effect evaporator system is employed, because (A) Total heat transfer area of ... in a single effect is much lower than that in any effect in a multi-effect system

Last Answer : (B) Total amount of vapor produced per Kg of feed steam in a multiple effect system is much higher than in a single effect

Description : Heat transfer by natural convection is enhanced in system with (A) High viscosity (B) High co-efficient of thermal expansio

Last Answer : (B) High co-efficient of thermal expansion

Description : As the difference between the wall temperature and bulk temperature increases, the boiling heat transfer co-efficient (A) Continues to increase (B) Continues to decrease (C) Goes through a minimum (D) Goes through a maximum

Last Answer : (C) Goes through a minimum

Description : The unit of heat transfer co-efficient in SI unit is (A) J/M2°K (B) W/m2°K (C) W/m°K (D) J/m°K

Last Answer : (B) W/m2°K

Description : Log mean temperature difference (LMTD) cannot be used, if (A) Heat transfer co-efficient over the entire heat exchanger is not constant (B) There exists an unsteady state (C) The heat capacity is not constant and there is a phase change (D) None of these

Last Answer : (D) None of these

Description : Controlling heat transfer film co-efficient is the one, which offers __________ resistance to heat transfer. (A) No (B) The least (C) The largest (D) Lower

Last Answer : (C) The largest