Define section modulus and neutral axis.

1 Answer

Answer :

Section Modulus: It is the ratio of M. I. of the section about the neutral axis and the distance of the most extreme fiber from the neutral axis.

Neutral Axis: It is the axis shown in cross-section where bending stress is zero called as neutral axis.

OR

The intersection of the neutral layer with any normal cross section of a beam is called as neutral axis.

Related questions

Description : State the relation between Young’s modulus and bulk modulus. 

Last Answer : E = 3K(1 - 2 µ ) Where, E= Young’s Modulus  K= Bulk Modulus  µ= Poisson’s Ratio

Description : Define the core of a section.

Last Answer : The centrally located portion of a within which the load must act so as to produce only compressive stress is called a core of the section.

Description : State and explain perpendicular axis theorem of moment of Inertia.

Last Answer : Perpendicular axis theorem: It states MI of a plane lamina about an axis perpendicular to the plane of lamina and passing through the centroid of the lamina is equal to the addition of the moments of ... OY are mutually perpendicular and OZ is the axis perpendicular to plane XY of the lamina.

Description : Define point of contra-flexure of a loaded beam with sketch.

Last Answer : Point of Contra-flexure: It is the point in bending moment diagram where bending moment changes its sign from positive to negative and vice versa. At that point bending moment is equal to zero. This point is called as point of contra-flexure.

Description : Define: (i) Moment of Inertia (ii) Radius of Gyration

Last Answer : i) Moment of Inertia: Moment of Inertia of a body about any axis is equal to the product of the area of the body and square of the distance of its centroid from that axis.  OR  Moment of ... at which the entire area is assumed to be concentrated without changing the M. I. about the given axis. 

Description : Explain the theory of pure torsion.

Last Answer : A shaft is a rotating part of machine which transmits power from one point to other. When a force acts tangentially at a point on the surface of the shaft it rotates or twist. The twisting is due to ... in the material of the shaft is subjected to pure shear.  Torsional Equation is   

Description : State the condition for no tension at the base of a column.

Last Answer : If the load acting in the middle third area or core of the section, then the material experiences only compressive stress without producing tensile stress. i.e. Direct stress is equal to bending stress. Minimum stress is zero, such condition is said to be no tension condition.  

Description : Draw stress-strain diagram for mild-steel rod and show different limits on it. 

Last Answer : Where, A = Limit of proportionality B = Elastic limit C = Upper yield point D = Lower yield point E = Ultimate load point F = Breaking point

Description : If M, I, R, E, F, and Y are the bending moment, moment of inertia, radius of curvature, modulus of  elasticity stress and the depth of the neutral axis at section, then  (A) M/I = R/E = F/Y (B) I/M = R/E = F/Y (C) M/I = E/R = E/Y (D) M/I = E/R = Y/F

Last Answer : (C) M/I = E/R = E/Y

Description : At any point of a beam, the section modulus may be obtained by dividing the moment of inertia of  the section by  (A) Depth of the section  (B) Depth of the neutral axis  (C) Maximum tensile stress at the section  (D) Maximum compressive stress at the section

Last Answer : (B) Depth of the neutral axis 

Description : The section modulus of a rectangular section about an axis through its C.G., is a. b/2 b. d/2 c. bd2/2 d. bd2/6

Last Answer : d. bd2/6

Description : The maximum magnitude of shear stress due to shear force F on a rectangular section of area A at  the neutral axis, is  (A) F/A (B) F/2A (C) 3F/2A (D) 2F/3A

Last Answer : (C) 3F/2A

Description : Pick up the correct statement from the following:  (A) The bending stress in a section is zero at its neutral axis and maximum at the outer fibres  (B) The shear stress is zero at the outer ... (C) The bending stress at the outer fibres, is known as principal stress  (D) All the above 

Last Answer : (D) All the above 

Description : Pick up the correct statement from the following:  (A) In a loaded beam, the moment at which the first yield occurs is called yield moment (B) In a loaded beam, the moment at which the ... beam, the neutral axis divides the section in two sections of  equal area  (D) All the above 

Last Answer : (D) All the above 

Description : The neutral axis of a beam cross-section must (A) Pass through the centroid of the section (B) Be equidistant from the top of bottom films (C) Be an axis of symmetry of the section (D) None of these

Last Answer : (A) Pass through the centroid of the section

Description : When a rectangular beam is loaded transversely, the maximum compressive stress develops on (A) Bottom fibre (B) Top fibre (C) Neutral axis (D) Every cross-section

Last Answer : (B) Top fibre

Description : The intensity of direct longitudinal stress in the cross-section at any point distant r from the neutral axis, is proportional to (A) r (B) 1/r (C) r2 (D) 1/r²

Last Answer : (A) r

Description : If is the shear force at a section of an I-joist, having web depth and moment of inertia about its neutral axis, the difference between the maximum and mean shear stresses in the web is, (A) Sd²/8I (B) Sd²/12I (C) Sd²/16I (D) Sd²/24I

Last Answer : (D) Sd²/24I

Description : The shear force on a simply supported beam is proportional to (A) Displacement of the neutral axis (B) Sum of the forces (C) Sum of the transverse forces (D) Algebraic sum of the transverse forces of the section

Last Answer : (D) Algebraic sum of the transverse forces of the section

Description : Pick up the incorrect statement from the following. The intensity of horizontal shear stress at the elemental part of a beam section, is directly proportional to (A) Shear force (B) Area of the section ... . of the area from its neutral axis (D) Moment of the beam section about its neutral axis

Last Answer : Answer: Option D

Description : With usual notations the depth of the neutral axis of a balanced section, is given by (A) mc/t = (d - n)/n (B) t/mc = (d - n)/n (C) t/mc = (d + n)/n (D) mc/t = n/(d - n)

Last Answer : Answer: Option D

Description : If the permissible stress in steel in tension is 140 N/mm², then the depth of neutral axis for a singly reinforced rectangular balanced section will be (A) 0.35 d (B) 0.40 d (C) 0.45 d (D) Dependent on grade of concrete also

Last Answer : Answer: Option B

Description : For a reinforced concrete section, the shape of shear stress diagram is (A) Wholly parabolic (B) Wholly rectangular (C) Parabolic above neutral axis and rectangular below neutral axis (D) Rectangular above neutral axis and parabolic below neutral axis

Last Answer : Answer: Option C

Description : The neutral axis in a T-beam section falls (a) Within the flange (b) Outside the flange (c) Either (a) or (b) (d) All the above

Last Answer : (c) Either (a) or (b)

Description : The section of the beam having greater width at the top in comparison to the width below neutral axis is known as. (a) Critical section (b) T-section (c) L-section (d) None of these

Last Answer : (b) T-section

Description : For a reinforced concrete beam section, the shape of shear stress diagram is (a) Parabolic over the whole section with maximum value at the neutral axis. (b) Parabolic above the neutral axis and rectangular below the neutral axis. (c) Linearly varying as the distance form the N.A. (d) All the above.

Last Answer : (b) Parabolic above the neutral axis and rectangular below the neutral axis.

Description : Regarding the working stress design of under reinforced concrete section, (a) The neutral axis depth will be greater than that of a balanced section. (b) The stress in steel intension will reach ... on the tension side is also be considered for calculating the moment of resistance of the section.

Last Answer : both b&c

Description : The effective depth of a singly reinforced rectangular beam is 300mm. the section is over-reinforced and the neutral axis is 120mm below the top. If the maximum stress attained by concrete is 5N/mn2 and the modular ratio ... in the steel will (a) 130N/mm2 (b) 135N/mm2 (c) 160N/mm2 (d) 180N/mm2

Last Answer : (b) 135N/mm2

Description : The neutral axis of an over –reinforced section falls (a) On the critical neutral axis of balanced section. (b) Below the critical neutral axis of balanced section (c) Above the neutral axis o balanced section (d) Al l the above

Last Answer : (b) Below the critical neutral axis of balanced section

Description : The neutral axis of a balanced section is called (a) Balanced neutral axis (b) Critical neutral axis (c) Equivalent neutral axis (d) All of these

Last Answer : (b) Critical neutral axis

Description : The actual neutral axis of n under reinforced section is above the critical neutral axis of a balanced section (a) Correct (b) Incorrect (c) Not known (d) None of these

Last Answer : (a) Correct

Description : The depth of neutral axis for a balanced section is --------- the depth of critical neutral axis [ A ] equal [ B ] always greater than [ C ] always less than [ D ] may be sometimes greater than

Last Answer : [ A ] equal

Description : The depth of neutral axis for over reinforced section is ----------- the depth of critical neutral axis [ A ] Equal to [ B ] Greater than [ C ] Less than [ D ] None of the above

Last Answer : [ B ] Greater than

Description : The depth of neutral axis for under reinforced section is --------- the depth of critical neutral axis [ A ] Equal to [ B ] Greater than [ C ] Less than [ D ] None of the above

Last Answer : [ C ] Less than

Description : The neutral axis corresponding to balanced section condition is termed as [ A ] Critical neutral axis [ B ] Centroidal neutral axis [ C ] Balanced neutral axis [ D ] All the above

Last Answer : [ A ] Critical neutral axis

Description : A beam of T-section is subjected to a shear force of F. The maximum shear force will occur at the a. top of the section b. bottom of the section c. neutral axis of the section d. junction of web and flange

Last Answer : c. neutral axis of the section

Description : Maximum shear stress in a triangular section ABC of height H and base B occurs at _________ a. H b. H/2 c. H/3 d. neutral axis

Last Answer : b. H/2

Description : What is the shear stress acting along the neutral axis, over a triangular section? a. 2.66 (S/bh) b. 1.5 (S/bh) c. 0.375 (S/bh) d. None of the above

Last Answer : a. 2.66 (S/bh)

Description : What is the shear stress acting along the neutral axis of triangular beam section, with base 60 mm and height 150 mm, when shear force of 30 kN acts? a. 15.36 N/mm2 b. 10.6 N/mm2 c. 8.88 N/mm2 d. Insufficient data

Last Answer : c. 8.88 N/mm2

Description : If the tendon is placed at an eccentricity e below the centroidal axis of the longitudinal axis of a rectangular beam (sectional modulus Z and stressed load P in tendon) the stress at the extreme top edge (A) Is ... by PZ/e (B) Is increased by Pe/Z (C) Is decreased by Pe/Z (D) Remains unchanged

Last Answer : Answer: Option C

Description : The ratio of the section modulus of a square section of side B and that of a circular section of  diameter D, is  (A) 2 /15  (B) 3 /16  (C) 3 /8  (D) /16

Last Answer : (B) 3 /16 

Description : Pick up the incorrect statement from the following: The torsional resistance of a shaft is directly  proportional to  (A) Modulus of rigidity  (B) Angle of twist  (C) Reciprocal of the length of the shaft  (D) Moment of inertia of the shaft section 

Last Answer : (D) Moment of inertia of the shaft section 

Description : A standard steel tape of length 30 m and cross-section 15 1.0 mm was standardised at 25°C and at 30 kg pull. While measuring a base line at the same temperature, the pull applied was 40 kg. If the modulus of elasticity of ... (A) - 0.000909 m (B) + 0.0909 m (C) 0.000909 m (D) None of these

Last Answer : (A) - 0.000909 m

Description : The section modulus of a rectangular light beam 25 metres long is 12.500 cm3 . The beam is simply supported at its ends and carries a longitudinal axial tensile load of 10 tonnes in addition to a point load of ... 13.33 kg/cm2 compressive (C) 26.67 kg/cm2 tensile (D) 26.67 kg/cm2 compressive

Last Answer : (C) 26.67 kg/cm2 tensile

Description : The section modulus of a rectangular section is proportional to  (A) Area of the section  (B) Square of the area of the section  (C) Product of the area and depth  (D) Product of the area and width

Last Answer : (A) Area of the section

Description : Strain energy of a member may be equated to  (A) Average resistance × displacement  (B) ½ stress × strain × area of its cross-section  (C) ½ stress × strain × volume of the member  (D) ½ (stress)2  × volume of the member + Young's modulus E

Last Answer : (D) ½ (stress)2  × volume of the member + Young's modulus E

Description : Pick up the correct assumption of the theory of simple bending  (A) The value of the Young's modulus is the same in tension as well as in compression  (B) Transverse section of a beam remains ... bending  (C) The material of the beam is homogeneous and isotropic  (D) All the above

Last Answer : (D) All the above

Description : A rectangular bar of width b and height h is being used as a cantilever. The loading is in a plane parallel to the side b. The section modulus is (A) bh3 /12 (B) bh²/6 (C) b²h/6 (D) None of these

Last Answer : (C) b²h/6

Description : If Z and I are the section modulus and moment of inertia of the section, the shear force F and bending moment M at a section are related by (A) F = My/I (B) F = M/Z (C) F = dM/dx (D) F Mdx

Last Answer : (C) F = dM/dx

Description : is the pre-stressed force applied to the tendon of a rectangular pre-stressed beam whose area of cross section is and sectional modulus is . The maximum stress in the beam, subjected to a maximum bending moment , is (A) f = (P/A) + (Z/M) ... ) + (M/Z) (C) f = (P/A) + (M/Z) (D) f = (P/A) + (M/6Z)

Last Answer : Answer: Option C