When A Real Gas Behaves Like Ideal Gas?

1 Answer

Answer :

A real gas behaves like an ideal gas in low pressure and high temperature conditions.

Related questions

Description : Superheated vapour behaves  (a) exactly as gas  (b) as steam  (c) as ordinary vapour  (d) approximately as a gas  (e) as average of gas and vapour.

Last Answer : Answer : d

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : Which of the following statements is TRUE for an ideal gas, but not for a real gas?  A. PV = nRT  B. An increase in temperature causes an increase in the kinetic energy of the gas  C. The ... same as the volume of the gas as a whole  D. No attractive forces exists between the molecule of a gas

Last Answer : PV = nRT

Description : An ideal gas as compared to a real gas at very high pressure occupies  (a) more volume  (b) less volume  (c) same volume  (d) unpredictable behaviour  (e) no such correlation.

Last Answer : Answer : a

Description : A 0.064 kg of octane vapor (MW = 114) is mixed with0.91 kg of air (MW = 29.0) in the manifold of an Engine. The total pressure in the manifold is 86.1 kPa, and a temperature is 290 K. assume octane behaves ideally. What is ... of the air in the mixture in KPa?  a. 46.8  b. 48.6  c. 84.6  d. 64.8

Last Answer : 84.6

Description : Which of the following behaves most closely like an ideal gas? (A) He (B) N2 (C) O2 (D) H2

Last Answer : (A) He

Description : To obtain integrated form of Clausius-Clapeyron equation, ln (P2/P1) = (∆HV/R) (1/T1- 1/T2) from the exact Clapeyron equation, it is assumed that the (A) Volume of the liquid phase is negligible compared to ... gas (C) Heat of vaporisation is independent of temperature (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : To what conditions does a gas behave like an ideal gas?  a. low temperature and low pressure  b. low temperature and high pressure  c. high temperature and low pressure  d. high temperature and high pressure

Last Answer : high temperature and low pressure

Description : The volume of a gas is directly proportional to the number of molecules of the gas.  a. Ideal gas law  b. Boyle-Mariotte Law  c. Avogadro’s Hypothesis  d. Gay-Lussac’s Law of combining Volumes

Last Answer : Avogadro’s Hypothesis

Description : The molecular number density of an ideal gas at standard temperature and pressure in cm3  a. Froude number  b. Loschmidt number  c. Mach number  d. Reynold number

Last Answer : Loschmidt number

Description : The volume of a gas under constant pressure increases or decrease with temperature.  a. Gay- Lussac’s Law  b. Ideal Gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Charles’ Law

Description : An ideal gas is compressed in a cylinder so well insulated that there is essentially no heat transfer. The temperature of gas  a. Remains constant  b. increases  c. decreases  d. is basically zero

Last Answer : increases

Description : A law relating the pressure, temperature and volume of an ideal gas  a. Gay-Lussac’s Law  b. Ideal gas Law  c. Charles’ Law  d. Boyle’s Law

Last Answer : Ideal gas Law

Description : An ideal gas is compresses isothermally. The enthalpy change is  a. Always negative  b. Always positive  c. zero  d. undefined

Last Answer : zero

Description : If the initial volume of an ideal gas is compressed to one-half its original volume and to twice its original temperature, the pressure:  a. doubles  b. halves  c. quadruples  d. triples

Last Answer : quadruples

Description : Which of the following compressibility factor of ideal gas  a. 1  b. 2  c. 1.5  d. 0

Last Answer : 1

Description : Regardless of the process, the change in enthalpy firm moles of ideal gas is  a. Heat  b. Enthalpy  c. Entropy  d. Density

Last Answer : Heat

Description : p1V1= p2V2  a. Charle's Law  b. Boyle's Law  c. Ideal Gas Law  d. Joule's Law

Last Answer : Boyle's Law

Description : What mass of nitrogen is contained in a10 ft3 vessel at a pressure of 840atm and 820°R? Make a computation by using ideal gas equation.  a. 194lb  b. 214lb  c. 394 lb  d. 413lb formula: m=pV /RT

Last Answer : 394 lb

Description : An ideal gas of volume 1liter and pressure 10 bar undergoes a quasistatic adiabatic expansion until the pressure drops to 1 bar. Assume γ to be 1.4 what is the final volume?  a. 3.18 l  b. 4.18 l  c. 5.18 l  d. 6.18 l

Last Answer : 5.18 l

Description : An ideal gas at 45psig and 80ºF is heated in the close container to 130ºF. What is the final pressure?  a. 65.10 psi  b. 65.11 psi  c. 65.23 psi  d. 61.16 psi P1V1/T1= P2V2/T2;V = Constant

Last Answer : 65.23 psi

Description : 3.0 lbm of air are contained at 25 psia and 100 ˚F. Given that Rair = 53.35 ft-lbf/lbm- ˚F, what is the volume of the container?  A.10.7 ft^3  B.14.7 ft^3  C.15 ft^3  D.24.9 ft^3 Formula: use the ideal gas law pV = mRT T = (100 +460) ˚R V = mRT/p

Last Answer : 24.9 ft^3

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : If the Kelvin temperature of an ideal gas is doubled, what happens to the rms speed of the molecules in the gas?  a. it increases by a factor of square root of 2  b. it increases by a factor of 2  c. it increases by factor of 4  d. none of the above

Last Answer : it increases by a factor of square root of 2

Description : An ideal gas is maintained at constant temperature. If the pressure on the gas is doubled, the volume is  a. increased fourfold  b. doubled  c. reduced by half  d. decreased by a quarter

Last Answer : reduced by half

Description : The volume of an ideal gas is directly proportional to its  a. pressure  b. Celsius temperature  c. Kelvin temperature  d. Fahrenheit temperature

Last Answer : Kelvin temperature

Description : The distribution of particle speeds in an ideal gas at a given temperature.  a. velocity of propagation  b. escape velocity  c. Maxwell speed Distribution  d. terminal velocity

Last Answer : Maxwell speed Distribution

Description : Which is NOT a correct statement?  A. A superheated vapor will not condense when small amount of heat re removed  B. An ideal gas is a gas that is not a superheated vapor  C. A saturated ... absorb as much heat as it can without vaporizing  D. Water at 1 atm and room temperature is subcooled

Last Answer : An ideal gas is a gas that is not a superheated vapor

Description : An ideal gas whose specific heats are constant is called _____.  A. Perfect gas  B. Natural gas  C. Artificial gas  D. Refined gas

Last Answer : Perfect gas

Description : Considering one mole of any gas, the equation of state of ideal gases is simply the ______ law.  A. Gay-Lussac law  B. Dulong and Petit  C. Avogadro’s  D. Henry’s

Last Answer : Avogadro’s

Description : “At constant pressure, the volume of a gas is inversely proportional to the pressure”. This is known as ______.  A. Boyle’s Law  B. Charles’s Law  C. Gay-Lussac Law  D. Ideal gas law

Last Answer : Boyle’s Law

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : In the equation Pv = RT, the constant of proportionality R is known as ______.  A. Universal gas constant  B. Gas constant  C. Ideal gas factor  D. Gas index

Last Answer : Gas constant

Description : The temperatures of the ideal gas temperature scale are measured by using a ______.  A. Constant-volume gas thermometer  B. Constant-mass gas thermometer  C. Constant-temperature gas thermometer  D. Constant-pressure gas thermometer

Last Answer : Constant-volume gas thermometer

Description : What temperature scale is identical to the Kelvin scale?  A. Ideal gas temperature scale  B. Ideal temperature scale  C. Absolute gas temperature scale  D. Triple point temperature scale

Last Answer : Ideal gas temperature scale

Description : According to Avogadro's law  A. the product of the gas constant and the molecular mass of an ideal gas is constant  B. the sum of partial pressure of the mixture of two gases is sum of the ... all gases, at the same temperature and pressure, contain equal number of molecules  D. all of the above

Last Answer : Answer: C

Description : The pressure exerted by an ideal gas is __________ of the kinetic energy of all the molecules contained in a unit volume of gas.  A.one-half  B.one-third  C.two-third  D.three-fourth

Last Answer : Answer: C

Description : According to Avogadro's Hypothesis  (a) the molecular weights of all the perfect gases occupy the same volume under same conditions of pressure and temperature  (b) the sum of partial pressure of ... gases have two values of specific heat  (e) all systems can be regarded as closed systems.

Last Answer : Answer : a

Description : An ideal plastic substance indicates no deformation, when stressed upto yield stress, but behaves like a Newtonian fluid beyond yield stress. Which of the following is an ideal plastic? (A) Sewage sludge (B) Rubber latex (C) Blood (D) Sugar solution

Last Answer : (A) Sewage sludge

Description : At equilibrium condition, the chemical potential of a material in different phases in contact with each other is equal. The chemical potential for a real gas (μ) is given by (where, μ = standard chemical potential at unit fugacity (f° = 1 atm. ... (B) μ°+ R ln f (C) μ° + T ln f (D) μ° + R/T ln f

Last Answer : (A) μ° + RT ln f

Description : What is defined as the ratio of the change in temperature to the change in pressure when a real gas is throttled?  A. Rankine coefficient  B. Kelvin coefficient  C. Maxwell-Boltzmann coefficient  D. Joule-Thomson coefficient

Last Answer : Joule-Thomson coefficient

Description : What is used for predicting the behavior of non-ideal gases?  a. Compressibility factor  b. Expansivity factor  c. Emissivity factor  d. Van-d-whal’s factor

Last Answer : Compressibility factor

Description : Ideal process are ________ process  a. Irreversible  b. Reversible  c. Isothermal  d. Isometric

Last Answer : Reversible

Description : What is a heat engine that operates on the reversible Carnot cycle called?  A. Carnot heat engine  B. Ideal heat engine  C. Most efficient heat engine  D. Best heat engine

Last Answer : Carnot heat engine

Description : The ideal efficiency of a Brayton cycle with regeneration, with increase in pressure ratio will  (a) increase  (b) decrease  (c) remain unchanged  (d) increase/decrease depending on ap-plication  (e) unpredictable. “

Last Answer : Answer : b

Description : The ideal efficiency of a Brayton cycle without regeneration with increase ni pressure ratio will  (a) increase  (b) decrease  (c) remain unchanged  (d) increase/decrease depending on application  (e) unpredictable.

Last Answer : Answer : a

Description : Properties of substances like pressure, temperature and density, in thermodynamic coordinates are  (a) path functions  (b) point functions  (c) cyclic functions  (d) real functions (e) thermodynamic functions.

Last Answer : Answer : b

Description : At same temperatures, the radiation emitted by all real surfaces is ______ the radiation emitted by a black body.  A. Less than  B. Greater than  C. Equal to  D. Either less than or greater than

Last Answer : Less than

Description : What is considered as a perfect absorber as well as a perfect emitter?  A. Gray body  B. Black body  C. Real body  D. White body

Last Answer : Black body

Description : How are thermodynamic properties classified?  A. Physical and chemical  B. Intensive and extensive  C. Real and imaginary  D. Homogeneous and heterogeneous

Last Answer : Intensive and extensive