At equilibrium condition, the chemical potential of a material in different phases in contact with each other is equal. The chemical potential for a real gas (μ) is given by (where, μ = standard chemical potential at unit fugacity (f° = 1 atm.) and the gas behaves ideally.)
(A) μ° + RT ln f
(B) μ°+ R ln f
(C) μ° + T ln f
(D) μ° + R/T ln f

1 Answer

Answer :

(A) μ° + RT ln f

Related questions

Description : For a real gas, the chemical potential is given by (A) RT d ln P (B) RT d ln f (C) R d ln f (D) None of these

Last Answer : (B) RT d ln f

Description : For an ideal gas, the chemical potential is given by (A) RT d ln P (B) R d ln P (C) R d ln f (D) None of these

Last Answer : (A) RT d ln P

Description : The free energy change for a chemical reaction is given by (where, K = equilibrium constant) (A) RT ln K (B) -RT ln K (C) -R ln K (D) T ln K

Last Answer : (B) -RT ln K

Description : For multi-component multiple phases to be in equilibrium at the same pressure and temperature, the __________ of each component must be same in all phases. (A) Chemical potential (B) Fugacity (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) and (B)

Description : The theoretical minimum work required to separate one mole of a liquid mixture at 1 atm, containing 50 mole % each of n- heptane and n octane into pure compounds each at 1 atm is (A) -2 RT ln 0.5 (B) -RT ln 0.5 (C) 0.5 RT (D) 2 RT

Last Answer : (B) -RT ln 0.5

Description : The necessary and sufficient condition for equilibrium between two phases is (A) The concentration of each component should be same in the two phases (B) The temperature of each phase should be same ( ... the two phases (D) The chemical potential of each component should be same in the two phases

Last Answer : (D) The chemical potential of each component should be same in the two phases

Description : To obtain integrated form of Clausius-Clapeyron equation, ln (P2/P1) = (∆HV/R) (1/T1- 1/T2) from the exact Clapeyron equation, it is assumed that the (A) Volume of the liquid phase is negligible compared to ... gas (C) Heat of vaporisation is independent of temperature (D) All (A), (B) & (C)

Last Answer : (D) All (A), (B) & (C)

Description : The molar excess Gibbs free energy, gE, for a binary liquid mixture at T and P is given by, (gE/RT) = A . x1. x2, where A is a constant. The corresponding equation for ln y1, where y1is the activity co-efficient of component 1, is (A) A . x22 (B) Ax1 (C) Ax2 (D) Ax12

Last Answer : (A) A . x22

Description : The necessary condition for phase equilibrium in a multiphase system of N components is that the (A) Chemical potentials of a given component should be equal in all phases (B) Chemical potentials of all ... potentials of any given component in all the phases should be the same (D) None of these

Last Answer : (A) Chemical potentials of a given component should be equal in all phases

Description : Helium ( R= 0.4698 BTU/lbm-˚R ) is compressed isothermally from 14.7 psia and 68 ˚F. The compression ratio is 1:4. Calculate the work done by the gas.  A. –1454 BTU/lbm  B. -364 BTU/lbm  C.-187BTU/lbm  D.46.7 BTU/lbm Formula: W = RT ln (V2/V1)

Last Answer : -364 BTU/lbm

Description : When liquid and vapour phase of multi-component system are in equilibrium (at a given temperature and pressure), then chemical potential of each component is (A) Same in both the phases (B) Zero in both the phases (C) More in vapour phase (D) More in liquid phase

Last Answer : (A) Same in both the phases

Description : Pick out the Clausius-Clapeyron equation from the following: (A) dP/dT = ∆H/T∆V (B) ln P = - (∆H/RT) + constant (C) ∆F = ∆H + T [∂(∆F)/∂T]P (D) None of these

Last Answer : B) ln P = - (∆H/RT) + constant

Description : In an ideal gas mixture, fugacity of a species is equal to its (A) Vapor pressure (B) Partial pressure (C) Chemical potential (D) None of these

Last Answer : (B) Partial pressure

Description : When liquid and vapour phases of one component system are in equilibrium (at a given temperature and pressure), the molar free energy is (A) More in vapour phase (B) More in liquid phase (C) Same in both the phases (D) Replaced by chemical potential which is more in vapour phase

Last Answer : (C) Same in both the phases

Description : The standard state of a gas (at a given temperature) is the state in which fugacity is equal to (A) Unity (B) Activity (C) Both (A) & (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) & (B)

Description : In an interphase heat transfer process, the equilibrium state corresponds to equality of temperature in the two phases, while the condition for equilibrium in an interphase mass transfer process is ... B) Chemical potentials (C) Activity co-efficients (D) Mass transfer co-efficients

Last Answer : (A) Concentrations

Description : Fugacity is a measure of the (A) Escaping tendencies of the same substance in different phases of a system (B) Relative volatility of a mixture of two miscible liquids (C) Behaviour of ideal gases (D) None of these

Last Answer : (A) Escaping tendencies of the same substance in different phases of a system

Description : The free energy change, AG (A) Is directly proportional to the standard free energy change, AG (B) Is equal to zero at equilibrium (C) Can only be calculated when the reactants and products are present at 1mol/1 concentrations (D) Is equal to –RT in keq

Last Answer : B

Description : Fugacity and pressure are numerically equal, when the gas is (A) In standard state (B) At high pressure (C) At low temperature (D) In ideal state

Last Answer : (D) In ideal state

Description : A 0.064 kg of octane vapor (MW = 114) is mixed with0.91 kg of air (MW = 29.0) in the manifold of an Engine. The total pressure in the manifold is 86.1 kPa, and a temperature is 290 K. assume octane behaves ideally. What is ... of the air in the mixture in KPa?  a. 46.8  b. 48.6  c. 84.6  d. 64.8

Last Answer : 84.6

Description : The compressibility factor, x, is used for predicting the behavior of nonideal gases. How is the compressibility ty factor defined relative to an ideal gas? (subscript c refers to critical value)  A. ... compressibility factor, x, is an dimensionless constant given by pV=zRT. Therefore z = pV / RT

Last Answer : z = pV/ RT

Description : Partial molar free energy of an element A in solution is same as its (A) Chemical potential (B) Activity (C) Fugacity (D) Activity co-efficient

Last Answer : (A) Chemical potential

Description : What is the equation for the work done by a constant temperature system?  A. W = mRTln(V2-V1)  B. W = mR( T2-T1 ) ln( V2/V1)  C. W = mRTln (V2/V1)  D. W = RT ln (V2/V1) Formula : W=∫ pdV lim1,2 ∫ = mRT / V

Last Answer : W = mRTln (V2/V1)

Description : Pick out the wrong statement. (A) A soft magnetic material should have high permeability and small area of hysteresis loop (B) Poisson's ratio of high melting point metals is more than unity (C) ... less than 185°C (D) Steel produced by B.O.F process is ideally suited for manufacturing flat product

Last Answer : Option B

Description : Fugacity and pressure are numerically not equal for the gases (A) At low temperature and high pressure (B) At standard state (C) Both (A) and (B) (D) In ideal state

Last Answer : (C) Both (A) and (B)

Description : Fugacity of a component in an ideal gas mixture is equal to the partial pressure of that component in the mixture. The fugacity of each component in a stable homogeneous solution at constant pressure and ... increases. (A) Decreases (B) Decreases exponentially (C) Increases (D) Remain constant

Last Answer : (C) Increases

Description : The reaction A (l) → R(g) is allowed to reach equilibrium conditions in an autoclave. At equilibrium, there are two phases, one a pure liquid phase of A and the other a vapor phase of A, R and S. Initially A alone is present. The numbers of degrees of freedom are: (A) 1 (B) 2 (C) 3 (D) 0

Last Answer : (B) 2

Description : If air is at pressure, p, of 3200 lbf/ft2 , and at a temperature, T, of 800 ˚R, what is the specific volume, v? (R=5303 ft-lbf/lbm-˚R, and air can be modeled as an ideal gas.)  A.9.8 ft^3/lbm  B.11.2 ft^3/lbm  C.13.33 ft^3/lbm  D.14.2 ft^3/lbm Formula: pv = RT v = RT / p

Last Answer : 13.33 ft^3/lbm

Description : The expression for entropy change given by, ΔS = - nR ln (P2/P1), holds good for (A) Expansion of a real gas (B) Reversible isothermal volume change (C) Heating of an ideal gas (D) Cooling of a real gas

Last Answer : (B) Reversible isothermal volume change

Description : Cell ‘A’ with O.P = 10 atm and T.P =5 atm is in contact with cell ‘B’ having O.P = 15 atm and T.P = 12 atm. The flow of water will be: (a) From A to B (b) Equal flow (c) From B to A (d) No flow

Last Answer : Ans. ((c))

Description : A reasonably general expression for vapour-liquid phase equilibrium at low to moderate pressure is φi yi P = Yi xifi° where, Φ is a vapor fugacity component, Yiis the liquid activity co- ... and liquid composition xi only (D) Temperature, pressure, liquid composition xi and vapour composition yi

Last Answer : (C) Temperature, pressure and liquid composition xi only

Description : If a system involves two phases, it is in ______ equilibrium when the mass of each phase reaches an equilibrium level and stays there.  A. Chemical  B. Thermal  C. Mechanical  D. Phase

Last Answer : Phase

Description : The relation among various mass transfer co-efficients (M.T.C) for ideal gases is given by (where, Kc & Km are M.T.C. for equimolar counter diffusion with concentration & mole fraction respectively as the driving ... (C) Kc = Kp . RT = Km . RT/p (D) None of these

Last Answer : (C) Kc = Kp . RT = Km . RT/p

Description : The expression, nRT ln(P1/P2), is for the __________of an ideal gas. (A) Compressibility (B) Work done under adiabatic condition (C) Work done under isothermal condition (D) Co-efficient of thermal expansion

Last Answer : C) Work done under isothermal condition

Description : Which of the following is Clausius-Clapeyron Equation for vaporisation of an ideal gas under the condition that the molar volume of liquid is negligible compared to that of the vapor? (A) d ln p/dt = Hvap/RT2 (B) d ln p/dt = RT2/Hvap (C) dp/dt = RT2/Hvap (D) dp/dt = Hvap/RT2

Last Answer : (A) d ln p/dt = Hvap/RT2

Description : Which of the following is not a unit of the equilibrium constant Kp? (where, Δx = number of moles of products number of moles of reactants) (A) (atm)Δx, when Δx is negative (B) (atm)Δx, when Δx is positive (C) Dimensionless, when Δx = 0 (D) (atm)Δx2, when Δx > 0

Last Answer : (D) (atm)Δx2, when Δx > 0

Description : Pick out the wrong statement. (A) Activity co-efficient is dimensionless. (B) In case of an ideal gas, the fugacity is equal to its pressure. (C) In a mixture of ideal gases, the fugacity of ... equal to the partial pressure of the component. (D) The fugacity co-efficient is zero for an ideal gas

Last Answer : (D) The fugacity co-efficient is zero for an ideal gas

Description : “The fugacity of a gas in a mixture is equal to the product of its mole fraction and its fugacity in the pure state at the total pressure of the mixture". This is (A) The statement as per Gibbs-Helmholtz (B) Called Lewis-Randall rule (C) Henry's law (D) None of these

Last Answer : (B) Called Lewis-Randall rule

Description : For a given substance at a specified temperature, activity is __________ to fugacity. (A) Directly proportional (B) Inversely proportional (C) Equal (D) None of these

Last Answer : (A) Directly proportional

Description : The chemical potential of a component (μi) of a phase is the amount by which its capacity for doing all work, barring work of expansion is increased per unit amount of substance added for an infinitesimal addition at constant temperature and ... , nj (C) (∂H/∂ni)S, P, nj (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Concentration of the limiting reactant (with initial concentration of a moles/litre) after time t is (a-x). Then 't' for a first order reaction is given by (A) k. t = ln a/(a - x) (B) k. t = x/a (a - x) (C) k. t = ln (a - x)/a (D) k. t = ln a (a - x)/x

Last Answer : (A) k. t = ln a/(a - x)

Description : The thickness of oxide film is y at time t. If K1, K2 and K3 are the temperature dependent constants, the parabolic law of oxidation is given by (A) y2 = 2k1t + k2 (B) y = k1 ln (k2t + k3) (C) y = k1 t + k2 (D) y = k1t3 + k2

Last Answer : Option A

Description : The equilibrium constant for a chemical reaction at two different temperatures is given by (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1) (B) Kp2/Kp1 = (∆H/R) (1/T2- 1/T1) (C) Kp2/Kp1 = ∆H (1/T2- 1/T1) (D) Kp2/Kp1 = - (1/R) (1/T2- 1/T1)

Last Answer : (A) Kp2/Kp1 = - (∆H/R) (1/T2- 1/T1)

Description : Chemical potential (an intensive property) of a substance is a force that drives the chemical system to equilibrium and is equal to its partial molar properties. The ratio of chemical potential to free energy of a pure substance ... temperature and pressure is (A) 0 (B) 1 (C) ∞ (D) None of these

Last Answer : (B) 1

Description : The potential of a uniformly charged line with density λ is given by, λ/(2πε) ln(b/a). State True/False. a) True b) False

Last Answer : a) True

Description : In case of absorption & stripping, the interface of the liquid & gas phases are present in equilibrium, when the diffusional resistance of __________ is zero. (A) Interface (B) Gas phase (C) Liquid phase (D) All 'a', 'b' & 'c'

Last Answer : (A) Interface

Description : Variation of equilibrium pressure with temperature for any two phases of a given substances is given by the __________ equation. (A) Gibbs-Duhem (B) Maxwell's (C) Clapeyron (D) None of these

Last Answer : (C) Clapeyron

Description : A T-beam behaves as a rectangular beam of a width equal to its flange if its neutral axis (A) Remains within the flange (B) Remains below the slab (C) Coincides the geometrical centre of the beam (D) None of these

Last Answer : Answer: Option A