Define isentropic process and plot it on, P-V and T-S diagram. 

1 Answer

Answer :

Isentropic Process: The process in which working substance neither receives nor rejects heat to its surrounding during expansion or compression is called as Isentropic process, it is also known as adiabatic process. Adiabatic process reversible when it is frictionless and the process is irreversible when it involves friction . 

image

image

Related questions

Description : Draw P-V and T-S diagram for isochoric process.

Last Answer : Isochoric Process: 

Description : Represent Isobaric, Isochoric, Isothermal, Adiabatic process on P-V and T-S diagram.

Last Answer : Isobaric process Isothermal process Isochoric process Adiabatic process:

Description : A plot of pressure vs. temperature for a given substance showing the various phases possible for that particular substance.  a. Phase diagram  b. P-T diagram  c. Wein Diagram  d. Histogram

Last Answer : Phase diagram

Description : On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point A. Then at a point A, the slope of the reversible adiabatic line (∂P/∂V)s and the slope of the reversible isothermal line ... Y (C) (∂P/∂V)S = y(∂P/∂V)T (D) (∂P/∂V)S = 1/y(∂P/∂V)T

Last Answer : (C) (∂P/∂V)S = y(∂P/∂V)T

Description : Draw dual cycle on P V and T S diagram and write the processes involved in it. 

Last Answer : 1-2 Isentropic compression of air  2-3 the combustion of fuel at constant volume.  3-4 the combustion of fuel at constant pressure  4-5 Isentropic expansion during which work is done by the system.  5-1 Heat rejection at constant volume. 

Description : Draw P-V and T-S diagram of dual combustion cycle.

Last Answer : Dual combustion cycle: 1-2 Isentropic compression of air 2-3 the combustion of fuel at constant volume. 3-4 the combustion of fuel at constant pressure 4-5 Isentropic expansion during which work is done by the system. 5-1 Heat rejection at constant volume.

Description : Draw P-V and T-S diagram for brayton cycle.

Last Answer : P-V and T-S diagram for brayton cycle.

Description : Explain Otto cycle with P-V and T-S diagram.

Last Answer : This cycle is so named as it was conceived by Otto'. On this cycle, petrol, gas and many types of oil engines work. It is the standard of comparison for internal combustion engines. Figs. ... 4-1 shows the rejection of heat by air at constant volume till original state (point 1) reaches.

Description : Describe with a neat diagram the working of a simple vapour compression refrigeration system. Represent the cycle on P–V and T–S diagram. 

Last Answer : Vapour compression refrigeration cycle: The vapor-compression uses a circulating liquid refrigerant as the medium which absorbs and removes heat from the space to be cooled and subsequently rejects that heat elsewhere. Figure shows ... the compressor. P-V Diagram T-S diagram: 

Description : Represent Isochoric Process on P-V and T-S chart.

Last Answer : Figure: P-V and T-S representation of Isochoric process

Description : In case of isentropic flow, the speed of sound in an ideal gas is proportional to (where, T = absolute temperature). (A) 1/√T (B) 1/T (C) √T (D) T

Last Answer : (C) √T

Description : Cox chart, which is useful in the design of distillation column particularly for petroleum hydrocarbons, is a plot of (where, P = vapor pressure, T = temperature). (A) log P vs. T (B) log P vs. log T (C) T vs. P (D) P vs. log T

Last Answer : (A) log P vs. T

Description : Which of the following statements about an enzyme exhibiting allosteric kinetics with cooperative interaction is false? (A) A plot of V-Vk [s] has a sigmaidal shape (B) An inhibitor may increase the ... Km and Vmax (D) Removal of allosteric inhibitor may result in hyperbolic V-S [s] plot

Last Answer : Answer : D

Description : A sigmoidal plot of substrate concentration ([S]) verses reaction velocity (V) may indicate (A) Michaelis-Menten kinetics (B) Co-operative binding (C) Competitive inhibition (D) Non-competitive inhibition

Last Answer : Answer : B

Description : For an irreversible process involving only pressure-volume work (A) (dF)T, p 0 (D) (dA)T, v >0

Last Answer : (A) (dF)T, p

Description : For a reversible process involving only pressure-volume work (A) (dF)T, p < 0 (B) (dF)T, p > 0 (C) (dF)T, p = 0 (D) (dA)T, v < 0

Last Answer : (C) (dF)T, p = 0

Description : Isometric process is  a. T = P  b. P = C  c. V = C  d. T = V

Last Answer : V = C

Description : The Second Chief Election Commissioner of India was – (1) Sukumar Sen (2) S. P. Sen Verma (3) K. V. K Sundaram (4) T. Swaminathan

Last Answer : (3) K. V. K Sundaram Explanation: K.V. K. Sundaram way an Indian civil servant who holds the record as the first Law Secretary (1948-58) of independent India and second Chief Election Commissioner of India (December 20, 1958 - September 30, 1967). Sulcumar Sen (1950-1958) was the first.

Description : Maxwell's relation corresponding to the identity, dH = dS = Vdp + ∑μi dni is (A) (∂T/∂V)S, ni = -(∂P/∂S)V, ni (B) (∂S/∂P)T, ni = (∂V/∂T)P, ni (C) (∂S/∂V)T, ni = (∂P/∂T)V, ni (D) (∂T/∂P)S, ni = (∂V/∂S)P, ni

Last Answer : (D) (∂T/∂P)S, ni = (∂V/∂S)P, ni

Description : The four properties of a system viz. P, V, T, S are related by __________ equation. (A) Gibbs-Duhem (B) Gibbs-Helmholtz (C) Maxwell's (D) None of these

Last Answer : (C) Maxwell's

Description : The Maxwell relation derived from the differential expression for the Helmholtz free energy (dA) is (A) (∂T/∂V)S = - (∂P/∂S)V (B) (∂S/∂P)T = - (∂V/∂T)P (C) (∂V/∂S)P = (∂T/∂P)S (D) (∂S/∂V)T = (∂P/∂T)V

Last Answer : (D) (∂S/∂V)T = (∂P/∂T)V

Description : The chemical potential of a component (μi) of a phase is the amount by which its capacity for doing all work, barring work of expansion is increased per unit amount of substance added for an infinitesimal addition at constant temperature and ... , nj (C) (∂H/∂ni)S, P, nj (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : Which of the following identities can be most easily used to verify steam table data for superheated steam? (A) (∂T/∂V)S = (∂p/∂S)V (B) (∂T/∂P)S = (∂V/∂S)P (C) (∂P/∂T)V = (∂S/∂V)T (D) (∂V/∂T)P = -(∂S/∂P)T

Last Answer : D) (∂V/∂T)P = -(∂S/∂P)T

Description : An ideal gas is heated at constant volume and then expanded isothermally. Show processes on P-V & T-S diagrams.

Last Answer : Process 1-2 : Constant volume process Process 2-3 : Constant temperature process (Isothermal process)

Description : What is the difference between isentropic process and throttlinglprocess ?

Last Answer : In isentropic process, heat transfer takes place and in throttling process, enthalpy before and after the process is same.

Description : An isentropic process is the one, in which (A) pv = constant (B) pv r= constant (C) pv r = constant, and process is reversible (D) None of these

Last Answer : (C) pv r = constant, and process is reversible

Description : Isentropic process means a constant __________ process. (A) Enthalpy (B) Pressure (C) Entropy (D) None of these

Last Answer : (C) Entropy

Description : PVγ = Constant (where, γ = Cp/Cv) is valid for a/an __________ process. (A) Isothermal (B) Isentropic (C) Isobaric (D) Adiabatic

Last Answer : (D) Adiabatic

Description : PVy = constant, holds good for an isentropic process, which is (A) Reversible and isothermal (B) Isothermal and irreversible (C) Reversible and adiabatic (D) Adiabatic and irreversible

Last Answer : C) Reversible and adiabatic

Description : An isentropic process is carried out at constant (A) Volume (B) Pressure (C) Temperature (D) All (A), (B) and (C)

Last Answer : (A) Volume

Description : In the equation, PVn = constant, if the value of n = ± ∞, then it represents a reversible __________ process. (A) Adiabatic (B) Isometric (C) Isentropic (D) Isothermal

Last Answer : (B) Isometric

Description : In the equation, PVn = constant, if the value of n is in between 1 and y (i.e. Cp/Cv), then it represents a reversible __________ process. (A) Isometric (B) Polytropic (C) Isentropic (D) Isobaric

Last Answer : (B) Polytropic

Description : In the equation PVn = constant, if the value of n = y = Cp/Cv, then it represents a reversible __________ process. (A) Isothermal (B) Adiabatic (C) Isentropic (D) Polytropic

Last Answer : (C) Isentropic

Description : In the equation, PVn = Constant, if the value of n = 0, then it represents a reversible __________ process. (A) Isobaric (B) Isothermal (C) Isentropic (D) Isometric

Last Answer : (A) Isobaric

Description : An approximately __________ process exemplifies the flow of a gas through a very long pipe of uniform cross-section. (A) Adiabatic (B) Isothermal (C) Isentropic (D) Isochoric

Last Answer : (B) Isothermal

Description : Work done by a/an __________ process is determined by ∫p. dv (A) Adiabatic (B) Quasi-static (C) Isothermal (D) Isentropic

Last Answer : (B) Quasi-static

Description : Adiabatic process is (A) Essentially an isentropic process is___________ (B) Non-heat transfer process (C) Reversible process (D) Constant temperature process

Last Answer : (B) Non-heat transfer process

Description : It is a process during which the pressure remains constant  a. Adiabatic  b. Isentropic  c. Isobaric  d. Isotropic

Last Answer : Isobaric

Description : A thermodynamic process in which entropy is conserved  a. isentropic  b. adiabatic  c. isothermal  d. polytropic

Last Answer : isentropic

Description : Another name of reversible adiabatic process  a. Isentropic Process  b. Isometric Process  c. Isobaric Process  d. Isothermal Process

Last Answer : Isentropic Process

Description : The process that has no heat transfer  a. Density  b. Isentropic Process  c. Isometric Process  d. Adiabatic

Last Answer : Adiabatic

Description : A state occurs in isentropic process  a. The change in entropy is 0  b. The change in entropy is 1  c. The change in enthalpy is 0  d. The change in enthalpy is 1

Last Answer : The change in entropy is 0

Description : The term “isentropic process” used in thermodynamics implies what?  A. Reversible adiabatic process  B. Externally reversible, adiabatic process  C. Internally reversible, adiabatic process  D. Irreversible adiabatic process

Last Answer : Internally reversible, adiabatic process

Description : “A reversible adiabatic process is necessarily isentropic but an isentropic process is not necessarily reversible adiabatic process.” This statement is:  A. True  B. False  C. May be true and may be false  D. Absurd

Last Answer : True

Description : A process during which entropy remains constant is called ______ process  A. Isometric  B. Isochoric  C. Isobaric  D. Isentropic

Last Answer : Isentropic

Description : How does an adiabatic process compare to an isentropic process?  A. Adiabatic heat transfer is not equal to zero; isentropic heat transfer is zero  B. Both heat transfer = 0; isentropic: reversible  ... is not equal to zero  D. Both heat transfer is not equal to zero; isentropic: irreversible

Last Answer : Both heat transfer = 0; isentropic: reversible

Description : During which of the following process does heat rejection takes place in Carnot cycle?  A. Isothermal expansion  B. Isentropic expansion  C. Isothermal compression  D. Isentropic compression

Last Answer : Answer: C

Description : A heat exchange process in which the product of pressure and volume remains constant is known as  (a) heat exchange process  (b) throttling process  (c) isentropic process  (d) adiabatic process  (e) hyperbolic process.

Last Answer : Answer : e

Description : The index of compression n tends to reach ratio of specific heats y when  (a) flow is uniform and steady  (b) process is isentropic  (c) process is isothermal  (d) process ... specific heat does not change with temperature  (e) process is isentropic and specific heat changes with temperature.

Last Answer : Answer : d

Description : `DeltaG^(@) vsT` plot in the Ellingham diagram slopes down for the reaction.

Last Answer : `DeltaG^(@) vsT` plot in the Ellingham diagram slopes down for the reaction. A. `Mg+(1)/(2)O_(2)toMgO` B. ` ... (2)toCO` D. `CO+(1)/(2)O_(2)toCO_(2)`