In what way will the gibbs free energy always be negative?

1 Answer

Answer :

What is the answer ?

Related questions

Description : The change in Gibbs free energy for vaporisation of a pure substance is (A) Positive (B) Negative (C) Zero (D) May be positive or negative

Last Answer : (C) Zero

Description : If the heat of solution of an ideal gas in a liquid is negative, then its solubility at a given partial pressure varies with the temperature as (A) Solubility increases as temperature ... (D) Solubility increases or decreases with temperature depending on the Gibbs free energy change of solution

Last Answer : (B) Solubility increases as temperature decreases

Description : Gibbs free energy of mixing at constant pressure and temperature is always (A) 0 (B) ∞ (C) + ve (D) - ve

Last Answer : (D) - ve

Description : Minimum gibbs free energy is NOT attained by a semipermeable membrane. True or false?

Last Answer : Can someone please help me with this question

Description : Assertion :- Catalyst change Gibbs free energy of system. Reason :- Catalyst changes preexponential factor of a chemical reaction.

Last Answer : Assertion :- Catalyst change Gibbs free energy of system. Reason :- Catalyst changes preexponential factor ... . If both Assertion & Reason are false.

Description : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. `Delta H` for the reaction is :-

Last Answer : The Gibbs free energy change of a reaction at `27^(@)C` is -26 Kcal. and its entropy change is -60 Cals/K. ... Cals. C. 34 K. Cals. D. `-24` K. Cals.

Description : How does the Gibbs free energy predict spontaneity?

Last Answer : If G is negative, then the answer is spontaneous

Description : If a reaction has an enthalpy of -54.32 kJ/mol and an entropy of -354.2 J/(K*mol), what is the Gibbs free Energy at 54.3(degrees c)?

Last Answer : DeltaG = DeltaH - TDeltaS dG = -54.32 kJ/mol - (54'32+273)K(-354.2J/molK) NB Thevtemperature is quoted in Kelvin(K) and the Entropy must be converted to kJ by dividing by '1000'/ Hence dG = ... 115.94 kJ/mol dG = (+)61.61 kJ/mol Since dG is positive, the reaction is NOT thermodynamically feasible.

Description : Boiling of liquid is accompanied with increase in the (A) Vapor pressure (B) Specific Gibbs free energy (C) Specific entropy (D) All (A), (B) and (C)

Last Answer : (A) Vapor pressure

Description : (∂H/∂T)P is the mathematical expression for (A) CV (B) Entropy change (C) Gibbs free energy (D) None of these

Last Answer : (D) None of these

Description : Specific/molar Gibbs free energy for a pure substance does not change during (A) Sublimation (B) Vaporisation (C) Melting (D) Either (A), (B) or (C)

Last Answer : (D) Either (A), (B) or (C)

Description : Gibbs free energy of a pure fluid approaches __________ as the pressure tends to zero at constant temperature. (A) Infinity (B) Minus infinity (C) Zero (D) None of these

Last Answer : (B) Minus infinity

Description : Gibbs free energy at constant pressure and temperature under equilibrium conditions is (A) ∞ (B) 0 (C) Maximum (D) Minimum

Last Answer : (D) Minimum

Description : In any spontaneous process, the __________ free energy decreases. (A) Helmholtz (B) Gibbs (C) Both ‘a’ & ‘b’ (D) Neither 'a' nor 'b'

Last Answer : (C) Both ‘a’ & ‘b’

Description : Gibbs free energy per mole for a pure substance is equal to the (A) Latent heat of vaporisation (B) Chemical potential (C) Molal boiling point (D) Heat capacity

Last Answer : (B) Chemical potential

Description : Specific __________ does not change during a phase change (e.g. sublimation, melting, vaporisation etc.). (A) Entropy (B) Internal energy (C) Enthalpy (D) Gibbs free energy

Last Answer : (D) Gibbs free energy

Description : The standard Gibbs free energy change of a reaction depends on the equilibrium (A) Pressure (B) Temperature (C) Composition (D) All (A), (B) and (C)

Last Answer : (B) Temperature

Description : The molar excess Gibbs free energy, gE, for a binary liquid mixture at T and P is given by, (gE/RT) = A . x1. x2, where A is a constant. The corresponding equation for ln y1, where y1is the activity co-efficient of component 1, is (A) A . x22 (B) Ax1 (C) Ax2 (D) Ax12

Last Answer : (A) A . x22

Description : The change in __________ is equal to the reversible work for compression in steady state flow process under isothermal condition. (A) Internal energy (B) Enthalpy (C) Gibbs free energy (D) Helmholtz free energy

Last Answer : (C) Gibbs free energy

Description : Gibbs free energy (G) is represented by, G = H - TS, whereas Helmholtz free energy, (A) is given by, A = E - TS. Which of the following is the Gibbs Helmholtz equation? (A) [∂(G/T)/∂T] = - (H/T2) (B) [∂(A/T)/∂T]V = - E/T2 (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) and (B)

Description : _________ does not change during phase transformation processes like sublimation, melting & vaporisation. (A) Entropy (B) Gibbs free energy (C) Internal energy (D) All (A), (B) & (C)

Last Answer : (B) Gibbs free energy

Description : Write A Short Note On Gibbs Free Energy And Derive The Equation For The Same.?

Last Answer : This thermodynamic quantity states that the decrease in value during a process is equal to the useful work done by the system. It is denoted by G and the mathematical equation is: G = H - TS Where ... of the system Thus the above equation becomes: ΔG = ΔH - TΔS is known as Gibbs-Helmoholtz equation.

Description : _________ is a thermodynamic potential that measures the “useful” or process-initiating work obtainable from an isothermal, isobaric thermodynamic system.  a. Du-Pont Potential  b. Gibbs free energy  c. Rabz-Eccles Energy  d. Claussius Energy

Last Answer : Gibbs free energy

Description : At the point of intersection for any two reactions for any two reactions in Ellingham diagram, the gibbs energy `(DeltaG)` changes becomes

Last Answer : At the point of intersection for any two reactions for any two reactions in Ellingham diagram, the gibbs energy `(DeltaG ... `gt1` B. 1 C. `lt0` D. 0

Description : Specific __________ does not change during phase change at constant temperature and pressure. (A) Entropy (B) Gibbs energy (C) Internal energy (D) Enthalpy

Last Answer : (B) Gibbs energy

Description : In which of the following reactions, standard reaction entropy change (S°) is positive and standard Gibb's energy change (G°) decreases sharply with increasing temperature? (1) 2 2 1 1 1 C graphite O (g) CO (g) 2 2 2   (2) 2 1 C ... CO(g) O (g) CO (g) 2   (4) 2 1 Mg(s) O (g) MgO(s) 2  

Last Answer : C graphite O (g) CO(g)

Description : Who is the poacher in Big Game by Stuart Gibbs?

Last Answer : Need answer

Description : What did Jonathon Clarkson Gibbs do as Florida and Secretary of State?

Last Answer : What is the answer ?

Description : __________ is concerned with the adsorption equilibria. (A) Fick's law (B) Gibb's equation (C) Freundlich equation (D) None of these

Last Answer : (C) Freundlich equation

Description : When a gas is expanded from high pressure region to low pressure region; temperature change occurs". This phenomenon is related to the (A) Gibbs-Duhem equation (B) Gibbs-Helmholtz equation (C) Third law of thermodynamics (D) Joule-Thomson effect

Last Answer : (D) Joule-Thomson effect

Description : Equation which relates pressure, volume and temperature of a gas is called the (A) Equation of state (B) Gibbs Duhem equation (C) Ideal gas equation (D) None of these

Last Answer : (A) Equation of state

Description : Gibbs-Duhem equation (A) States that n1dμ1 + n2dμ2 + ....njdμj = 0, for a system of definite composition at constant temperature and pressure (B) Applies only to binary systems (C) Finds no application in gas-liquid equilibria involved in distillation (D) None of these

Last Answer : (A) States that n1dμ1 + n2dμ2 + ....njdμj = 0, for a system of definite composition at constant temperature and pressure

Description : The four properties of a system viz. P, V, T, S are related by __________ equation. (A) Gibbs-Duhem (B) Gibbs-Helmholtz (C) Maxwell's (D) None of these

Last Answer : (C) Maxwell's

Description : Number of components (C), phase (P) and degrees of freedom (F) are related by Gibbs phase rule as (A) P + F - C = 2 (B) C = P - F + 2 (C) F = C - P - 2 (D) P = F - C - 2

Last Answer : A) P + F - C = 2

Description : Gibbs-Helmholtz equation is (A) ∆F = ∆H + T [∂(∆F)/∂T]P (B) ΔF = ΔH - TΔT (C) d(E - TS) T, V < 0 (D) dP/dT = ∆Hvap/T.∆Vvap

Last Answer : (A) ∆F = ∆H + T [∂(∆F)/∂T]P

Description : The relation connecting the fugacities of various components in a solution with one another and to composition at constant temperature and pressure is called the __________ equation. (A) Gibbs-Duhem (B) Van Laar (C) Gibbs-Helmholtz (D) Margules

Last Answer : (A) Gibbs-Duhem

Description : Variation of equilibrium pressure with temperature for any two phases of a given substances is given by the __________ equation. (A) Gibbs-Duhem (B) Maxwell's (C) Clapeyron (D) None of these

Last Answer : (C) Clapeyron

Description : Gibbs phase rule finds application, when heat transfer occurs by (A) Conduction (B) Convection (C) Radiation (D) Condensation

Last Answer : (D) Condensation

Description : Gibbs-Duhem equation relates composition in liquid phase and the __________ at constant temperature & pressure. (A) Fugacity (B) Partial pressure (C) Activity co-efficient (D) All (A), (B), and (C)

Last Answer : (D) All (A), (B), and (C)

Description : “The fugacity of a gas in a mixture is equal to the product of its mole fraction and its fugacity in the pure state at the total pressure of the mixture". This is (A) The statement as per Gibbs-Helmholtz (B) Called Lewis-Randall rule (C) Henry's law (D) None of these

Last Answer : (B) Called Lewis-Randall rule

Description : What is Gibbs phenomenon? Or what are Gibbs oscillations?

Last Answer : One possible way of finding an FIR filter that approximates H(ejw) would be to truncate the infinite Fourier series at n= + (N-1)/2. Abrupt truncation of the series will lead to oscillation both in pass band and in stop band. This phenomenon is known as Gibbs phenomenon.

Description : The total energy of revolving electron in an atom – (1) cannot be negative (2) can have any value above zero (3) can never be positive (4) will always be positive

Last Answer : (3) can never be positive Explanation: The total energy of a revolving electron in any orbit is the sum of its kinetic and potential energies. Energy of an electron at infinite distance from the ... and the energy of electron decreases and thus becomes negative. Thus, it can never be positive.

Description : Pick out the wrong statement. (A) Surface tension of a substance vanishes at critical point, as there is no distinction between liquid and vapour phases at its critical point (B) Entropy of ... is negative for exothermic reactions (D) The eccentric factor for all materials is always more than one

Last Answer : (D) The eccentric factor for all materials is always more than one

Description : The total energy of revolving electron in an atom (1) cannot be negative (2) can have any value above zero (3) can never be positive (4) will always be positive

Last Answer : can never be positive

Last Answer : Negative Thoughts Away To : Occasionally Negative Thoughts Comes Of the mind Inside Submission Emotions From A. Due Emotions Never Chest Inside Pushe Keep That's right No. Negative Thoughts If there is ... Near Grateful Be. You see , yours Negative Thoughts Slowly Slowly Mind From Move Will go