The equation relating E, P, V and T which is true for all substances under all conditions is given by (∂E/∂V)T = T(∂P/∂T)H - P. This equation is called the
(A) Maxwell's equation
(B) Thermodynamic equation of state
(C) Equation of state
(D) Redlich-Kwong equation of state

1 Answer

Answer :

(B) Thermodynamic equation of state

Related questions

Description : Cvis given by (A) (∂E/∂T)V (B) (∂E/∂V)T (C) (∂E/∂P)V (D) (∂V/∂T)P

Last Answer : (A) (∂E/∂T)V

Description : Maxwell's relation corresponding to the identity, dH = dS = Vdp + ∑μi dni is (A) (∂T/∂V)S, ni = -(∂P/∂S)V, ni (B) (∂S/∂P)T, ni = (∂V/∂T)P, ni (C) (∂S/∂V)T, ni = (∂P/∂T)V, ni (D) (∂T/∂P)S, ni = (∂V/∂S)P, ni

Last Answer : (D) (∂T/∂P)S, ni = (∂V/∂S)P, ni

Description : Which is not constant for an ideal gas? (A) (∂P/∂V)T (B) (∂V/∂T)P (C) (∂P/∂V)V (D) All (A), (B) & (C)

Last Answer : (A) (∂P/∂V)T

Description : The Maxwell relation derived from the differential expression for the Helmholtz free energy (dA) is (A) (∂T/∂V)S = - (∂P/∂S)V (B) (∂S/∂P)T = - (∂V/∂T)P (C) (∂V/∂S)P = (∂T/∂P)S (D) (∂S/∂V)T = (∂P/∂T)V

Last Answer : (D) (∂S/∂V)T = (∂P/∂T)V

Description : Which of the following identities can be most easily used to verify steam table data for superheated steam? (A) (∂T/∂V)S = (∂p/∂S)V (B) (∂T/∂P)S = (∂V/∂S)P (C) (∂P/∂T)V = (∂S/∂V)T (D) (∂V/∂T)P = -(∂S/∂P)T

Last Answer : D) (∂V/∂T)P = -(∂S/∂P)T

Description : Joule-Thomson co-efficient is defined as (A) µ = (∂P/∂T)H (B) µ = (∂T/∂P)H (C) µ = (∂E/∂T)H (D) µ = (∂E/∂P)H

Last Answer : (B) µ = (∂T/∂P)H

Description : On a P-V diagram of an ideal gas, suppose a reversible adiabatic line intersects a reversible isothermal line at point A. Then at a point A, the slope of the reversible adiabatic line (∂P/∂V)s and the slope of the reversible isothermal line ... Y (C) (∂P/∂V)S = y(∂P/∂V)T (D) (∂P/∂V)S = 1/y(∂P/∂V)T

Last Answer : (C) (∂P/∂V)S = y(∂P/∂V)T

Description : Joule-Thomson co-efficient which is defined as, η = (∂T/∂P)H = 1/Cp (∂H/∂T)P, changes sign at a temperature known as inversion temperature. The value of Joule-Thomson co-efficient at inversion temperature is (A) 0 (B) ∞ (C) +ve (D) -ve

Last Answer : (A) 0

Description : (∂E/∂T)V is the mathematical expression for (A) CV (B) Enthalpy change (C) Free energy change (D) None of these

Last Answer : (D) None of these

Description : Gibbs free energy (G) is represented by, G = H - TS, whereas Helmholtz free energy, (A) is given by, A = E - TS. Which of the following is the Gibbs Helmholtz equation? (A) [∂(G/T)/∂T] = - (H/T2) (B) [∂(A/T)/∂T]V = - E/T2 (C) Both (A) and (B) (D) Neither (A) nor (B)

Last Answer : (C) Both (A) and (B)

Description : (1/V) (∂V/∂T)Pis the mathematical expression (A) Joule-Thomson co-efficient (B) Specific heat at constant pressure (Cp) (C) co-efficient of thermal expansion (D) Specific heat at constant volume (CV)

Last Answer : (C) co-efficient of thermal expansion

Description : The Joule-Thomson co-efficient is defined as (∂T/∂P)H. Its value at the inversion point is (A) ∞ (B) 1 (C) 0 (D) -ve

Last Answer : (C) 0

Description : (∂T/∂P)H is the mathematical expression for (A) Specific heat at constant pressure (Cp) (B) Specific heat at constant volume (Cv) (C) Joule-Thompson co-efficient (D) None of these

Last Answer : (C) Joule-Thompson co-efficient

Description : Gibbs-Helmholtz equation is (A) ∆F = ∆H + T [∂(∆F)/∂T]P (B) ΔF = ΔH - TΔT (C) d(E - TS) T, V < 0 (D) dP/dT = ∆Hvap/T.∆Vvap

Last Answer : (A) ∆F = ∆H + T [∂(∆F)/∂T]P

Description : The chemical potential of a component (μi) of a phase is the amount by which its capacity for doing all work, barring work of expansion is increased per unit amount of substance added for an infinitesimal addition at constant temperature and ... , nj (C) (∂H/∂ni)S, P, nj (D) All (A), (B) and (C)

Last Answer : (D) All (A), (B) and (C)

Description : The four properties of a system viz. P, V, T, S are related by __________ equation. (A) Gibbs-Duhem (B) Gibbs-Helmholtz (C) Maxwell's (D) None of these

Last Answer : (C) Maxwell's

Description : Variation of equilibrium pressure with temperature for any two phases of a given substances is given by the __________ equation. (A) Gibbs-Duhem (B) Maxwell's (C) Clapeyron (D) None of these

Last Answer : (C) Clapeyron

Description : Pick out the Clausius-Clapeyron equation from the following: (A) dP/dT = ∆H/T∆V (B) ln P = - (∆H/RT) + constant (C) ∆F = ∆H + T [∂(∆F)/∂T]P (D) None of these

Last Answer : B) ln P = - (∆H/RT) + constant

Description : For one dimensional flow of an incompressible fluid in unsteady state in x-direction, the continuity equation is given by (A) ∂u/∂x = 0 (B) ∂(ρu)/∂x = 0 (C) (∂u/∂x) = - (∂ρ/∂t) (D) ∂ρ/∂t = 0

Last Answer : (A) ∂u/∂x = 0

Description : Under which of the following conditions is the relation, `Delta H = Delta E + P Delta V` valid for a system :-

Last Answer : Under which of the following conditions is the relation, `Delta H = Delta E + P ... and pressure D. Constant temperature, pressure and composition

Description : If the vapour pressure at two temperatures of a solid phase in equilibrium with its liquid phase are known, then the latent heat of fusion can be calculated by the (A) Maxwell's equation (B) Clausius-Clapeyron Equation (C) Van Laar equation (D) Nernst Heat Theorem

Last Answer : B) Clausius-Clapeyron Equation

Description : The term N.T.P. stands for  (a) nominal temperature and pressure  (b) natural temperature and pressure  (c) normal temperature and pressure  (d) normal thermodynamic practice  (e) normal thermodynamic pressure.

Last Answer : Answer : c

Description : In which of the following forms can Maxwell’s equation not be represented? a) Static b) Differential c) Integral d) Harmonic

Last Answer : a) Static

Description : For structural analysis of forces, the method refers to  (A) Moment-area-theorem  (B) Three-moment equation  (C) Maxwell's reciprocal theorem  (D) None of these

Last Answer : (A) Moment-area-theorem 

Description : (∂H/∂T)P is the mathematical expression for (A) CV (B) Entropy change (C) Gibbs free energy (D) None of these

Last Answer : (D) None of these

Description : Properties of substances like pressure, temperature and density, in thermodynamic coordinates are  (a) path functions  (b) point functions  (c) cyclic functions  (d) real functions (e) thermodynamic functions.

Last Answer : Answer : b

Description : What is a form of mechanical work which is related with the expansion and compression of substances?  A. Boundary work  B. Thermodynamic work  C. Phase work  D. System work

Last Answer : Boundary work

Description : The area under the temperatureentropy curve (T – s curve) of any thermodynamic process represents  A. heat absorbed  B. heat rejected  C. either (a) or (b)  D. none of these

Last Answer :  C. either (a) or (b)

Description : Which of the following is the Ideal gas law (equation)?  A. V/T = K  B. V= k*(1/P)  C. P1/T1 = P2/T2  D. PV = nRT

Last Answer : PV = nRT

Description : Pick out the correct equation relating 'F' and 'A'. (A) F = A + PV (B) F = E + A (C) F = A - TS

Last Answer : (A) F = A + PV

Description : The molar excess Gibbs free energy, gE, for a binary liquid mixture at T and P is given by, (gE/RT) = A . x1. x2, where A is a constant. The corresponding equation for ln y1, where y1is the activity co-efficient of component 1, is (A) A . x22 (B) Ax1 (C) Ax2 (D) Ax12

Last Answer : (A) A . x22

Description : Which of the following relationships is correct for relating the three elastic constants of an isotropic elastic material (where, E = Young's modulus, G = Modulus of rigidity or shear modulus v = Poisson's ratio)? (A) E = 2G (1 + v) (B) E = G (1 + v) (C) E = G (1 + v)/2 (D) E = 2G (1 + 2v)

Last Answer : (A) E = 2G (1 + v)

Description : For calculating the evaporation rate over a reservoir surface E = 0.771 (1.465 - 0.00732B) (0.44 - 0.007375 V) (pe - pa), the equation is given by (A) Roohwer's, formula in M.K.S. (B) Roohwer's formula in F.P.S. (C) Dalton's formula in F.P.S. (D) Dalton's formula in M.K.S

Last Answer : Answer: Option A

Description : The equation relating friction factor to Reynold number, f -0.5 = 4 loge (NRe /√f) -0.4 , is called the __________ equation. (A) Nikuradse (B) Von-Karman

Last Answer : (B) Ergun's

Description : Pick out the wrong statement. (A) Trouton's ratio of non-polar liquids is calculated using Kistyakowsky equation (B) Thermal efficiency of a Carnot engine is always less than 1 (C) An equation relating pressure, volume and temperature of a gas is called ideal gas equation (D) None of these

Last Answer : (C) An equation relating pressure, volume and temperature of a gas is called ideal gas equation

Description : Which of the following represents the Virial equation of state? (A) T = [RT/(V- b)] - [a/√T. V(V + b)] (B) PV/RT = 1 + (B/V) + (C/V2) + …… (C) n1u2 + μ2μ1 = 0 (D) None of these

Last Answer : (B) PV/RT = 1 + (B/V) + (C/V2) + ……

Description : A series of operations, which takes place in a certain order and restore the initial conditions at the end, is known as  A. reversible cycle  B. irreversible cycle  C. thermodynamic cycle  D. none of these

Last Answer : Answer: C

Description : The velocity of a ball tossed vertically into the air is expressed by the equation v(t) = -32t + 4, where t is given in seconds. Give the velocity of the ball when it reaches its highest point. 

Last Answer : ANSWER: 0

Description : Pick out the correct statement. (A) Like internal energy and enthalpy, the absolute value of standard entropy for elementary substances is zero (B) Melting of ice involves increase in enthalpy and ... of an ideal gas depends only on its pressure (D) Maximum work is done under reversible conditions

Last Answer : (D) Maximum work is done under reversible conditions

Description : The inherent characteristic of an equal percentage valve relating flow rate 'q' with valve stem movement 'x' are described by the equation (A) dq/dx = K (B) dq/dx = K.q (C) dq/dx = K/q (D) dq/dx = Kq 2

Last Answer : (A) dq/dx = K

Description : "At the absolute zero temperature, the entropy of every perfectly crystalline substance becomes zero". This follows from the (A) Third law of thermodynamics (B) Second law of thermodynamics (C) Nernst heat theorem (D) Maxwell's relations

Last Answer : (A) Third law of thermodynamics

Description : Trichloroacetic acid, a strong acid, has been used by dentists for chemical cautery of hypertrophic tissue and aphthous ulcers; its mechanism of action is, BOUCHERS P 194 A. Thermodynamic ... Activation of tissue enzymes C. Osmotic pressure D. Protein precipitation (PPT) E. Neutralization

Last Answer : D. Protein precipitation (PPT)

Description : Mark the correct option relating to the loan on PLI policy (EA) e) Exceeding 3 years but not exceeding 5 years 60% f) Exceeding 5 years but not exceeding 10 years 80% g) Exceeding 10 years 90% h) All the above

Last Answer : h) All the above

Description : Which of the following is Virial equation of state? (A) (p + a/V2)(V - b) = nRT (B) PV = nRT (C) PV = A + B/V + C/V2 + D/V3 + ... (D) None of these

Last Answer : (C) PV = A + B/V + C/V2 + D/V3 + ...

Description : Internal energy of a gas obeying Van-Der-Waals equation of state, [p + (a/v2)] (V - b) = RT, depends upon its (A) Pressure & temperature (B) Pressure & specific volume (C) Temperature & specific volume (D) Temperature only

Last Answer : (A) Pressure & temperature

Description : The energy equation, E + (p/ρ) + (V 2 /2g) + gZ = constant (E = internal energy/mass), is applicable to (A) Perfect gases only (B) Isothermal flow of gases (C) Adiabatic unsteady flow of gases (D) All compressible fluids

Last Answer : (D) All compressible fluids

Description : Which one of the following best defines the word allotropes ? A Different structural forms of an element B A pair of substances that differ by H+ C Elements that possess properties intermediate between ... a specific number of neutrons E The different phases (solid, liquid or gas) of a substance

Last Answer : A Different structural forms of an element 

Description : Uniform fluid flow occurs, when the derivative of the flow variables satisfy the following condition. (A) ∂/∂t = 0 (B) ∂/∂t = constant (C) ∂/∂s = 0 (D) ∂/∂s = constant

Last Answer : (C) ∂/∂s = 0

Description : Steady fluid flow occurs, when the derivative of flow variables satisfy the following condition. (A) ∂/∂s = 0 (B) ∂/∂t = 0 (C) ∂/∂s = constant (D) ∂/∂t = constant

Last Answer : (B) ∂/∂t = 0