The main purpose of providing fins on heat transfer surface is to
increase the
(A) Temperature gradient
(B) Mechanical strength of the equipment
(C) Heat transfer area
(D) Heat transfer co-efficient

1 Answer

Answer :

(C) Heat transfer area

Related questions

Description : Pick out the wrong statement. (A) Superheated steam is preferably not used for process heating because of its low heat transfer film co-efficient (B) In a shell and tube heat exchanger ... surface heat exchangers, when the direction of fluid flow is parallel to the axis of the tube

Last Answer : (C) S.I. unit of fouling factor is Watt/m2 .°K

Description : Even though heat transfer co-efficient in boiling liquids is large, use of fins is advantageous, when the entire surface is exposed to __________ boiling. (A) Film (B) Nucleate (C) Transition (D) All modes of

Last Answer : Option A

Description : Extended heat transfer surface like fins are used to increase the heat transfer rate. Fin efficiency is defined as the ratio of heat transferred across the fin surface to the theoretical heat transfer ... (C) Temperature of the fin end (D) Constant temperature equal to that of the base

Last Answer : (D) Constant temperature equal to that of the base

Description : Indirect contact heat exchangers are preferred over direct contact heat exchangers, because (A) Heat transfer co-efficient are high (B) There is no risk of contamination (C) There is no mist formation (D) Cost of equipment is lower

Last Answer : (B) There is no risk of contamination

Description : Which of the following parameters is increased by use of finned tube in a multipass shell and tube heat exchanger? (A) Tube side pressure drop and the heat transfer rate (B) Convective heat transfer co-efficient (C) Effective tube surface area for convective heat transfer (D) All (A) (B) and (C)

Last Answer : (D) All (A) (B) and (C)

Description : . The inner wall of a furnace is at a temperature of 700°C. The composite wall is made of two substances, 10 and 20 cm thick with thermal conductivities of 0.05 and 0.1 W.m-1.°C-1 respectively. The ambient air is at 30°C ... from the outer surface in W.m-2 is (A) 165.4 (B) 167.5 (C) 172.5 (D) 175

Last Answer : (A) 165.4

Description : Baffles are provided in heat exchangers to increase the (A) Fouling factor (B) Heat transfer area (C) Heat transfer co-efficient (D) Heat transfer rate

Last Answer : (C) Heat transfer co-efficient

Description : As the difference between the wall temperature and bulk temperature increases, the boiling heat transfer co-efficient (A) Continues to increase (B) Continues to decrease (C) Goes through a minimum (D) Goes through a maximum

Last Answer : (C) Goes through a minimum

Description : In a heat exchanger, floating head is provided to (A) Facilitate cleaning of the exchanger (B) Increase the heat transfer area (C) Relieve stresses caused by thermal expansion (D) Increase log mean temperature gradient

Last Answer : (C) Relieve stresses caused by thermal expansion

Description : The heat dissipating capability of transformers of ratings higher than 30 kVA in increased by providing which of the following ? (a) Corrugations (b) Fins (c) Tubes (d) Radiator tanks (e) All of the above

Last Answer : (e) All of the above

Description : Heat exchangers operating, when the asymptotic range is reached, (A) Provide very large heat transfer co-efficient (B) Results in making part of the heating surface inactive (C) Results in abruptly increased velocity (D) None of these

Last Answer : (B) Results in making part of the heating surface inactive

Description : Fouling factor for a heat exchanger is given by (where, U1 = heat transfer co-efficient of dirty surface U2 = heat transfer co-efficient of clean surface). (A) U1 - U2 (B) 1/U1 - 1/U2 (C) 1/U2 - 1/U1 (D) U2 - U1

Last Answer : (B) 1/U1 - 1/U2

Description : Fluid motion in the natural convection heat transfer between a solid surface and a fluid in contact with it, results from the (A) Existence of thermal boundary layer (B) Temperature gradient produced ... difference (C) Buoyancy of the bubbles produced at active nucleation site (D) None of these

Last Answer : (D) None of these

Description : Baffles in the shell side of a shell and tube heat exchanger (A) Increase the cross-section of the shell side liquid (B) Force the liquid to flow parallel to the bank (C) Increase the shell side heat transfer co-efficient (D) Decrease the shell side heat transfer co-efficient

Last Answer : (C) Increase the shell side heat transfer co-efficient

Description : In case of vertical tube evaporator, with increase in liquor level, the overall heat transfer co-efficient (A) Increases (B) Decreases (C) Is not affected (D) May increase or decrease; depends on the feed

Last Answer : (B) Decreases

Description : In a vapor-liquid contacting equipment, the overall gas phase mass transfer co-efficient (M.T.C), KG is related to individual co-efficients (KG and KL ) as (A) KG = 1/KG + m/KL (B) 1/KG = 1/KG + m/KL (C) 1/KG = 1/KL + m/KG (D) KG = 1/KL + m/KG

Last Answer : (B) 1/KG = 1/KG + m/KL

Description : . A dilute aqueous solution is to be concentrated in an evaporator system. High pressure steam is available. Multiple effect evaporator system is employed, because (A) Total heat transfer area of ... in a single effect is much lower than that in any effect in a multi-effect system

Last Answer : (B) Total amount of vapor produced per Kg of feed steam in a multiple effect system is much higher than in a single effect

Description : Double pipe heat exchangers are preferably useful, when (A) High viscosity liquid is to be cooled (B) Requirement of heat transfer area is low (C) Overall heat transfer co-efficient is very high (D) A corrosive liquid is to be heated

Last Answer : (B) Requirement of heat transfer area is low

Description : Heat transfer rate per unit area is called (A) Thermal conductivity (B) Heat flux (C) Heat transfer co-efficient (D) Thermal diffusivity

Last Answer : (B) Heat flux

Description : Pick out the wrong statement. (A) 'Solvates' are chemical compounds formed by solute with their solvents. When water is the solvent, then it is called a 'hydrate' (B) In heat exchanger ... vertical evaporators, area of central downtake is about 50 to 100% of the total tube cross-sectional area

Last Answer : (C) Heat transfer co-efficient during nucleate boiling is not influenced by the agitation imparted

Description : An ideal coolant for a nuclear reactor should (A) Be a good absorber of neutrons (B) Be capable of attaining high temperature, only when it is pressurised (C) Have high density, but low heat transfer co-efficient (D) Be free from radiation damage and non-corrosive

Last Answer : (D) Be free from radiation damage and non-corrosive

Description : Log mean temperature difference (LMTD) cannot be used, if (A) Heat transfer co-efficient over the entire heat exchanger is not constant (B) There exists an unsteady state (C) The heat capacity is not constant and there is a phase change (D) None of these

Last Answer : (D) None of these

Description : Heat transfer co-efficient (h1 ) for liquids increases with (A) Increasing temperature (B) Decreasing temperature (C) Decreasing Reynolds number (D) None of these

Last Answer : (A) Increasing temperature

Description : The left face of a one dimensional slab of thickness 0.2 m is maintained at 80°C and the right face is exposed to air at 30°C. The thermal conductivity of the slab is 1.2 W/m.K and the heat transfer co-efficient from the ... temperature of the right face in °C is (A) 77.2 (B) 71.2 (C) 63.8 (D) 48.7

Last Answer : (D) 48.7

Description : In a shell and tube heat exchanger, floating head is used for (A) Large temperature differentials (B) High heat transfer co-efficient (C) Low pressure drop (D) Less corrosion of tubes

Last Answer : (A) Large temperature differentials

Description : Walls of a cubical oven are of thickness l, and they are made of material of thermal conductivity k. The temperature inside the oven is 100°C and the inside heat transfer co-efficient is 3k/l'. If the wall temperature ... wall temperature in degree centigrade? (A) 35.5 (B) 43.75 (C) 81.25 (D) 48.25

Last Answer : (C) 81.25

Description : A thin, flat & square plate measuring 2 m 2 m is freely hanging in ambient air at 25°C. It is exposed to the solar radiation falling on one side of the plate at the rate of 500 W/m2. The plate temperature will ... heat transfer co-efficient is __________ W/m2 °C. (A) 50 (B) 100 (C) 150 (D) 200

Last Answer : (B) 100

Description : Finned tube heat exchangers (A) Give larger area per tube (B) Use metal fins of low thermal conductivity (C) Facilitate very large temperature drop through tube wall (D) Are used for smaller heat load

Last Answer : (A) Give larger area per tube

Description : The purpose of providing expansion bellows in the shell of tubular exchanger is to (A) Increase the heating load (B) Impart structural strength (C) Account for the uneven expansion of shell and tube bundles (D) Facilitate increase of shell length, if needed

Last Answer : (C) Account for the uneven expansion of shell and tube bundles

Description : In case of a multipass shell and tube heat exchanger, providing a baffle on the shell side __________ the heat transfer rate. (A) Increases (B) Decreases (C) Does not affect (D) May increase or decrease, depends on the type of baffle

Last Answer : (A) Increases

Description : Newton's law of viscosity, which states that the shear stress is proportional to the __________ Co-efficient of viscosity is called dynamic or absolute viscosity(where, V = velocity, Vg = velocity gradient). (A) V2 (B) 1/V2 (C) 1/Vg (D) Vg

Last Answer : Option D

Description : Mass transfer co-efficient is directly proportional to DAB 0.5 , according to __________ theory. (A) Penetration (B) Surface renewal (C) Film (D) None of these

Last Answer : (A) Penetration

Description : Mass transfer co-efficient is directly proportional to DAB according to the __________ theory. (A) Film (B) Penetration (C) Surface-renewal (D) None of these

Last Answer : (A) Film

Description : Calculation of mass transfer co-efficient is mostly/normally done using __________ theory. (A) Surface renewal (B) Film (C) Penetration (D) None of these

Last Answer : (B) Film

Description : Pick out the wrong statement. (A) The condensing film co-efficient is about 3 times lower for vertical condenser as compared to the equivalent horizontal condenser for identical situation ( ... in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Last Answer : (D) Overall heat transfer co-efficient in a heat exchanger is controlled by the value of the film co-efficient, which is higher

Description : . In a shell and tube heat exchanger, the tube side heat transfer co￾efficient just at the entrance of the tube is (A) Infinity (B) Zero (C) Same as average heat transfer co-efficient for tube side (D) None of these

Last Answer : (A) Infinity

Description : Heat transfer by natural convection is enhanced in system with (A) High viscosity (B) High co-efficient of thermal expansio

Last Answer : (B) High co-efficient of thermal expansion

Description : The unit of heat transfer co-efficient in SI unit is (A) J/M2°K (B) W/m2°K (C) W/m°K (D) J/m°K

Last Answer : (B) W/m2°K

Description : Convective heat transfer co-efficient in case of fluid flowing in tubes is not affected by the tube length/diameter ratio, if the flow is in the __________ zone. (A) Laminar (B) Transition (C) Both 'a' & 'b' (D) Highly turbulent

Last Answer : (D) Highly turbulent

Description : Steam is to be condensed in a shell and tube heat exchanger, 5 m long with a shell diameter of 1 m. Cooling water is to be used for removing the heat. Heat transfer co-efficient ... ) Horizontal heat exchanger with steam on tube side (D) Horizontal heat exchanger with steam on shell side

Last Answer : (B) Vertical heat exchanger with steam on shell side

Description : Controlling heat transfer film co-efficient is the one, which offers __________ resistance to heat transfer. (A) No (B) The least (C) The largest (D) Lower

Last Answer : (C) The largest

Description : Steam side heat transfer co-efficient in an evaporator is in the range of __________ kcal/hr.m2°C. (A) 10-50 (B) 100-500 (C) 1000-1500 (D) 5000-15000

Last Answer : (D) 5000-15000

Description : For turbulent flow in a tube, the heat transfer co-efficient is obtained from the Dittus-Boelter correlation. If the tube diameter is halved and the flow rate is doubled, then the heat transfer co-efficient will change by a factor of (A) 1 (B) 1.74 (C) 6.1 (D) 37

Last Answer : (C) 6.1

Description : Overall heat transfer co-efficient for cooling of hydrocarbons by water is about (A) 50 -100 Kcal/hr.m2 .°C (B) 50 -100 W/m2 .°K (C) 50 -100 BTU/hr. ft. 2°F (D) 1000 - 1500 BTU/hr. ft. 2°F

Last Answer : (C) 50 -100 BTU/hr. ft. 2°F

Description : Heat transfer co-efficient (h) for a fluid flowing inside a clean pipe is given by h = 0.023 (K/D) (DVρ/µ) 0.8 (CP .µ/k) 0.4 . This is valid for the value of NRe equal to (A) < 2100 (B) 2100-4000 (C) > 4000 (D) > 10000

Last Answer : (D) > 10000

Description : The inside heat transfer co-efficient in case of turbulent flow of liquid in the tube side in a 1-2 shell and tube heat exchanger is increased by __________ times, when the number of tube passes is increased to 8. (A) 2 0.8 (B) 4 0.8 (C) 4 0.4 (D) 2 0.4

Last Answer : (B) 4 0.8

Description : If h1 = inner film co-efficient and /h2 = outer film co-efficient, then the overall heat transfer co-efficient is (A) Always less than h1 (B) Always between h1 and h2 (C) Always higher than h2 (D) Dependent on metal resistance

Last Answer : (B) Always between h1 and h2